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1 The Damped Pendulum

The context under which the simple pendulum is typically discussed is not subject to energy

dissipation, and hence, the energy remains a constant throughout its motion. In this essay we

consider the motion of the pendulum in the presence of friction. Due to the presence of friction

the energy of the pendulum no longer remains a constant, and hence, there is energy dissipation

throughout the motion. Regardless of the initial conditions, the pendulum finally comes to rest

at its downward vertical position. We can envision friction arising in two main forms: it can be

present in the pivot, and it can be present due to air drag (if the pendulum moves in air, that is,

of course; in general, it can be any fluid medium). For the present discussion let us only consider

the air drag which can be taken as being proportional to the instantaneous speed for relatively

slower swings. We can then write the frictional damping force (Ff ) as Ff = av where a (> 0)
is a constant and v is the instantaneous speed. Denoting the angle that the pendulum makes

with the downward vertical as θ (positive when measured counterclockwise), v = lθ̇ where l is

the length of the pendulum measured from the pivot point; therefore, Ff = alθ̇. Here a single

(double) overdot refers to the first (second) derivative with respect to time. Applying Newton’s

second law, we obtain,

−mg sin θ − alθ̇ = mlθ̈,

where m is the mass of the pendulum concentrated in the bob and g is the constant gravitational

acceleration. The equation of motion can then be written as,

θ̈ = −

( g

l

)

sin θ −
( a

m

)

θ̇.
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We can recognize the factor g/l as the square of the angular frequency ω2
0 of the undamped

pendulum. Let us use 2α to denote the constant a/m and take α > 0 to be the damping constant

(the reason for the factor 2 is for convenience that would simplify our expressions later). The

equation of motion for the damped pendulum can thus be written in its final form as,

θ̈ = −ω2
0 sin θ − 2αθ̇. (1)

2 The Linear Damped Pendulum

The presence of the sin θ term in (1) makes the equation of motion nonlinear, and hence, im-

possible to find a solution in closed form. However, just as with the undamped pendulum for

small swings, many interesting behaviors of the pendulum can be surfaced by considering small

librations for which sin θ ≈ θ, in which case closed form solutions can be found. With the linear

approximation, the equation of motion (1) can be written as,

θ̈ + 2αθ̇ + ω2
0θ = 0. (2)

Our goal now is to express θ as a function of time t satisfying the above expression subject to

initial conditions. Toward this, let us posit a solution of the form θ(t) = ert, where r stands for

the ‘roots’ to be found. Given that the equation to be solved is a second order linear differential

equation, we expect there to be two linearly independent solutions (hence two roots of r), which

can be superimposed to form the full solution. If θ(t) = ert, then it follows that θ̇ = r · ert and

θ̈ = r2 · ert. Substituting these expressions in (2) we obtain,

(

r2 + 2αr + ω2
0

)

ert = 0.

For this equation to be satisfied for all t, it must hold true that,

r2 + 2αr + ω2
0 = 0. (3)

This quadratic equation in r is the characteristic equation of (2) and carries two roots r1 and r2

which are easily found to be,

r1 = −α +
√

α2 − ω2
0, (4)

r2 = −α −

√

α2 − ω2
0. (5)
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Given the simpler-looking forms for r1 and r2, the reader may now appreciate the presence of the

factor 2 in the equation of motion. The general solution can now be expressed as,

θ(t) = Ber1t + Cer2t, (6)

where B and C are constants (which are generally complex numbers). The specific behavior of

the linear damped pendulum then depends on whether α2 − ω2
0 is negative (α2

< ω2
0: under-

damped), zero (α2 = ω2
0 : critically damped), or positive (α2

> ω2
0: overdamped). We study each

of these scenarios in turn.

2.1 Underdamped Motion: α2
< ω2

0

To study the case of underdamping, where α2
< ω2

0, let us first introduce a new frequency ω2 =
ω2

0 − α2. Thus, this new frequency ω is less than that of ω0. Since in this case the discriminant

α2 − ω2
0 < 0, the square root of the discriminant becomes a complex number. However, since

ω2
> 0, ω is a real number. With i2 = −1, the two roots can now be written as,

r1 = −α + iω,

r2 = −α − iω.

The real part (−α) of the roots signifies the decay of the pendulum’s motion while the imaginary

parts (±iω) of the roots signify its oscillations. So the resultant motion is a combination of the

two giving rise to oscillations that decay over time. Substituting the latest expressions for the

roots in (6), we obtain

θ(t) = e−αt
(

Beiωt + Ce−iωt
)

.

We immediately see that since α > 0, as t → ∞, θ → 0. Since e±iωt = cos ωt± i sin ωt, substituting

and collecting the real and imaginary parts result in,

θ(t) = e−αt [(B + C) cos ωt + i(B − C) sin ωt] .

Now, let us consider a right triangle with hypotenuse A, opposite side length (B + C), and the

adjacent side length i(B − C) with the angle between the adjacent and the hypotenuse Φ. Thus,

sin Φ = (B + C)/A and cos Φ = i(B − C)/A. The above expression can then be written as,

θ(t) = Ae−αt

[

(B + C)

A
cos ωt +

i(B − C)

A
sin ωt

]

= Ae−αt (sin ωt · cos Φ + cos ωt · sin Φ)

θ(t) = Ae−αt · sin(ωt + Φ)
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In this expression, A denotes the amplitude, α the damping constant, ω the effective frequency,

and Φ the phase. Differentiating the above expression with respect to time yields the instanta-

neous angular velocity θ̇(t). We collect the expressions for θ(t) and θ̇(t) below:

θ(t) = Ae−αt · sin(ωt + Φ)

θ̇(t) = Ae−αt [ω · cos(ωt + Φ)− α · sin(ωt + Φ)]

(7)

(8)

The amplitude A and the phase Φ are determined by the initial conditions at t = 0. Suppose

θ(0) = θ0 and θ̇(0) = θ̇0 are the initial conditions. Then,

θ(0) = θ0 = A · sin Φ (9)

θ̇(0) = θ̇0 = A [ω · cos Φ − α · sin Φ] (10)

dividing (10) by (9) and solving for Φ, we determine the phase to be,

Φ = cot−1

[

1

ω

(

θ̇0

θ0
+ α

)]

.

The value for Φ can then be substituted back into (9) to determine the amplitude A, yielding,

A =
θ0

sin
[

cot−1
[

1
ω

(

θ̇0
θ0
+ α

)]] .

Figures 1 and 2 show the decay in the oscillations in both the angle and the angular velocity

against time for a specific set of parameters. Figure 3 shows the effect of the damping constant

in the decay of oscillations; a larger damping constant results in a swifter decay of oscillations.
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Figure 1: The underdamped decay of the oscillations in the angle θ of the damped linear pendulum against

time t (blue curve). The oscillations are enveloped by the decay functions (red curves). For the case shown,

α = 0.4 s−1, ω = 2 s−1. The initial conditions are θ0 = 0.5 rad and θ̇0 = 0 rad s−1.
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Figure 2: The underdamped decay in angular velocity θ̇ of the damped linear pendulum against time t.

For the case shown, α = 0.4 s−1, ω = 2 s−1. The initial conditions are θ0 = 0.5 rad and θ̇0 = 0 rad s−1.
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Figure 3: The underdamped decay of the oscillations in the angle θ of the damped linear pendulum against

time t for two different damping constants α = 0.4 s−1 (blue) and α = 0.9 s−1 (red) with ω = 2 s−1. Larger

damping constants lead to swifter decays in oscillations. The initial conditions are the same for both cases:

θ0 = 0.5 rad and θ̇0 = 0 rad s−1.
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Figure 4 shows the phase portrait of a linear underdamped pendulum for two different damping

constants but having the same ω (hence, not the same ω0) and starting with the same initial con-

ditions. The phase curves spiral from the starting point and terminate at the origin (0, 0) which

correspond to the pendulum hanging vertically down at rest. This is the ultimate state of the

pendulum given the energy dissipation due to damping. Therefore the origin of phase space is

an attracting point since all phase curves of the linear underdamped pendulum terminate there.

Figure 5 shows a multitude of phase curves having the same damping constant α and same ω0

(and hence, the same ω) but starting at different initial conditions. Note that, in Figure 5, since

the parameters α and ω0 are fixed for all initial conditions, the phase curves cannot intersect since

that would violate the uniqueness of the solutions to the associated equation of motion. In other

words, if the phase curves cross, then the pendulum has to "decide" which path to take at the

cross roads, which it cannot do.
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Figure 4: The phase curves of the linear underdamped pendulum for two sets of parameters. The initial

conditions, θ0 = 0.5 rad, θ̇0 = 0 rad s−1, are the same for both. Both phase curves terminate at the attracting

point (0, 0).
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Figure 5: Phase curves for the linear underdamped pendulum starting at different initial conditions. For

all curvea α = 0.4 s−1 and ω0 = 2 s−1. All phase curves terminate at the origin (0, 0), which is the attracting

point. Since the parameters α and ω0 are fixed for all initial conditions, the phase curves cannot intersect

since that would violate the uniqueness of the solutions to the associated equation of motion. In other

words, if the phase curves cross, then the pendulum has to "decide" which path to take at the cross roads,

which it cannot do.
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We can add the time dimension to a phase curve of a linear underdamped pendulum and visu-

alize its evolution in time as shown in Figure 6.

Figure 6: The time (in seconds) evolution of a phase curve (blue) of a linear underdamped pendulum with

α = 0.1 s−1, ω0 = 2 s−1, and initial conditions θ0 = 2π rad, θ̇0 = 2π rad s−1. The red dot shows the

attracting point at θ = θ̇ = 0 on the angle-angular velocity phase plane where the motion terminates due to

energy loss.

Before moving further we wish to address a potential befuddlement that the reader may harbor

regarding the expressions for sin Φ and cos Φ, which were derived from a right triangle having

side lengths (B + C), i(B − C), and A. We have also commented earlier that B and C are complex

numbers in general. Therefore, it may appear as if the lengths (B + C) and i(B − C) are not real

numbers, which they must be for the sine and cosine values to make sense. Here we wish to

demonstrate that all is well with regards to these lengths. To see this, let us claim that A1 =
(B + C) and A2 = i(B − C) are real numbers. Solving for B and C, we obtain B = 1

2 (A1 − iA2)
and C = 1

2 (A1 + iA2). Thus B and C are complex conjugates of each other, so one can be

obtained from the other by letting i → −i. (We will denote the complex conjugate of a complex

number z by z∗; therefore, B = C∗ and B∗ = C.) This indeed must be the case for the solution

θ(t) = e−αt(Beiωt + Ce−iωt) to hold. That is, if θ(t) = e−αt · Beiωt is a solution, then its complex

conjugate θ(t) = e−αt · B∗e−iωt must also be a solution. But as shown above, B∗ = C, and therefore

θ(t) = e−αt · Ce−iωt is a solution. The superposition of both these solutions is then also a solution

for θ(t) with θ(t) real. Thus the lengths (B +C) and i(B −C) are real numbers and are consistent
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with the solution to the linear underdamped pendulum.

2.2 Critically Damped Motion: α2 = ω2
0

In the case of the critically damped motion the solutions take the form,

θ(t) = e−αt (B + Ct)

θ̇(t) = e−αt [C − α(B + Ct)]

(11)

(12)

The constants B and C can be found using the initial conditions θ0 and θ̇0 at time t = 0 resulting

in,

B = θ0, C = θ̇0 + αθ0.

Let us now discuss the origin of the solution (11) closely. In the critically damped case the two

roots given in (4) and (5) are the same with r1 = r2 = −α. Certainly, one of the solutions to

the equation of motion (2) can still be claimed to be of the form Be−αt. We now need to find a

second solution that is linearly independent to the first; that is, the second solution must not be

a constant multiple of the first. With the two roots being the same, therefore, the second solution

cannot take the form Ce−αt. To find this second linearly independent solution, let us put the

equation of motion in the form

θ̈ + bθ̇ + cθ = 0, (13)

where b = 2α and c = ω2
0. The characteristic equation then takes the form

r2 + br + c = 0. (14)

Given the fact that if the two roots of a quadratic equation are r1 and r2, then their sum is the

negative of the ratio of the coefficient of the linear term (b in this case) to the coefficient of the

quadratic term (1 in this case), and their product is the positive of the ratio of the coefficient of

the constant term (c in this case) to the coefficient of the quadratic term, we have,

r1 + r2 = −b, r1r2 = c.

Since in the critically damped case r1 = r2, we have 2r1 = −b and r2
1 = c. The approach to

finding a second linearly independent solution to that of Ber1t is to perturb the root r1. That is,

we take the first root to be r′1 = r1 and we let the second root to be r′2 = r1 + ρ, where ρ > 0 is

an infinitesimally small value. Thus r′1 and r′2 differ infinitesimally. Therefore, their sum and the

product becomes,

r′1 + r′2 = 2r1 + ρ = −b + ρ, r′1r′2 = r1(r1 + ρ) = r2
1 + r1ρ = c + r1ρ.

Now, we understand that the roots r′1 and r′2 can no longer be the roots of the original equation
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of motion (13), but to a slightly perturbed equation of motion. Using the relationship between

the roots and the coefficients of a quadratic equation stated above, the characteristic equation of

the perturbed equation of motion becomes r′2 − (r′1 + r′2)r
′ + r′1r′2 = 0, or equivalently,

r′2 + (b − ρ)r′ + (c + r1ρ) = 0. (15)

Hence, the perturbed equation of motion that would satisfy this characteristic equation takes the

form,

θ̈ρ + (b − ρ)θ̇ρ + (c + r1ρ)θρ = 0, (16)

The subscript ρ signifies that the solution to θ(t) is now dependent on ρ. In the limit ρ → 0 we

recover (13) from (16).

Given the two new roots r′1 = r1 and r′2 = r1 + ρ, we can now posit a solution to θρ(t) as,

θρ(t) =
1

ρ

[

e(r1+ρ)t − er1t
]

. (17)

To verify that this indeed is a solution of (16) let us find the first and second derivates of θρ(t)
with respect to time and substitute in (16). The derivatives are,

θ̇ρ =
1

ρ

[

(r1 + ρ)e(r1+ρ)t − r1er1t
]

, θ̈ρ =
1

ρ

[

(r1 + ρ)2e(r1+ρ)t − r2
1er1t

]

.

Substitution in (16) and rearrangement results in (for the left hand side of (16)),

−
1

ρ

(

r2
1 + br1 + c

)

er1t +
1

ρ

[

(r1 + ρ)2 + (b − ρ)(r1 + ρ) + (c + r1ρ)
]

e(r1+ρ)t +
1

ρ
(r1ρ − r1ρ) er1t.

The expression in the first bracket is zero since r1 is a root of (14); similarly, the expression in the

second bracket is zero since r1 + ρ = r′1 is a root of (15); and the last expression vanishes as well.

Therefore the solution (17) satisfies the second order differential equation (16). However, what

we really are interested in is the solution to (13), which can be obtained in the limit ρ → 0. Thus,

θ(t) = lim
ρ→0

θρ(t) = lim
ρ→0

1

ρ

[

e(r1+ρ)t − er1t
]

.

Expanding the exponential terms in the infinite series form, we have,

e(r1+ρ)t = 1 +
(r1 + ρ)t

1!
+

(r1 + ρ)2t2

2!
+

(r1 + ρ)3t3

3!
+ · · · , er1t = 1 +

r1t

1!
+

r2
1t2

2!
+

r3
1t3

3!
+ · · · .
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Substituting these in the limit expression, we observe that the terms that do not carry ρ in the

numerators cancel, and that the terms that are second or higher order in ρ goes to zero when

ρ → 0. This finally leaves us with an expression of the form,

θ(t) = t

(

1 +
r1t

1!
+

(r1t)2

2!
+ · · ·

)

= ter1t.

Therefore, the solution that is linearly independent to that of er1t is t · er1t. Since r1 = −α in the

case of the critically damped pendulum, this justifies the solution written in (11).

2.3 Overdamped Motion: α2
> ω2

0

In the case of over damped motion, since α2 − ω2
0 > 0, a positive real constant ω2 can be directly

defined as ω2 = α2 − ω2
0 . Therefore, the two roots r1 and r2 become,

r1 = −α + ω, r2 = −α − ω.

Thus the solutions take the form,

θ(t) = e−αt
(

Beωt + Ce−ωt
)

θ̇(t) = e−αt
[

(ω − α) · Beωt − (ω + α) · Ce−ωt
]

(18)

(19)

Again, the constants B and C can be found using the initial conditions θ0 and θ̇0 at time t = 0

resulting in,

B =
1

2

[

θ0 +
1

ω
(θ̇0 + αθ0)

]

, C =
1

2

[

θ0 −
1

ω
(θ̇0 + αθ0)

]

.

Figure 7 shows the change in the angle over time for underdamped, critically damped, and over-

damped scenarios for the linear pendulum for a specific set of parameters. Figure 8 shows the

corresponding motion in the phase plane.
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Figure 7: The underdamped (green), critical (blue), and overdamped (red) decays in the angle θ of the

damped linear pendulum against time t. The initial conditions are the same for all cases: θ0 = 0.5 rad and

θ̇0 = 0 rad s−1.
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Figure 8: The phase curves for underdamped (green), critical (blue), and overdamped (red) cases of the

damped linear pendulum. The initial conditions θ0 = 0.5 rad, θ̇0 = 0 rad s−1, are the same for all cases. Due

to energy loss all phase curves terminate at the attracting point (0, 0), which corresponds to the pendulum

hanging at rest in the downward vertical position.
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3 The NonLinear Damped Pendulum

In the previous section we analyzed the motion of the damped pendulum in the linear approx-

imation where sin θ was approximated by θ. We now remove this approximation and consider

the motion of the damped pendulum in its full glory. We remind ourselves that the equation of

motion of the damped pendulum is given by (1):

θ̈ = −ω2
0 sin θ − 2αθ̇.

Just as in the case of the simple pendulum with no damping, there is no closed form solution to

the above equation, and therefore, we must resort to numerical integration. Figure 9 shows the

resulting phase portrait of the damped pendulum after numerical integration for a multitude of

initial conditions but for the same set of parameters.
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Figure 9: Phase curves for the damped pendulum (without the linear approximation) starting at different

initial conditions. For all curves α = 0.1 s−1 and ω0 = 1 s−1. The red phase curves are the separatrices for

the stable attractor point at the origin (0, 0) and bound the basin of attraction for that point. The unstable

points marked in open red circles are at (±π, 0). Two other stable attractor points are shown at ±2π.

Figure 9 shows that attractor points occur at angles ±neπ where ne are even integers; similarly,

unstable critical points occur at angles ±noπ where no are odd integers. The two red phase

curves show the separatrices for the attractor point at the origin (0, 0); these separate the damped
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librations from the full rotations with respect to the attractor point at the origin. Any initial con-

dition that falls between the shown separatrices will result in the damped pendulum ultimately

settling at, and hence, attracted to, the origin (which is the rest position of the pendulum hanging

vertically down). The separatrices belonging to a given attractor point goes through the unstable

critical points on either side of the attractor point (one seperatrix through each unstable critical

point). The phase space region bounded by the separatrices related to a given a attractor point

is called the Basin of Attraction for that point. In Figure 9 there are three basins of attractions

corresponding to the three attractor points shown.

If the pendulum is brought to an unstable equilibrium by rotating it counterclockwise by 180◦

or π (rad), then the pendulum will be at the (π, 0) position. This is the situation where the

pendulum will be hanging vertically ‘upside down’. From this point, if the pendulum is given

a slight nudge to the left, then it will eventually settle at the attractor point at (2π, 0). Instead,

if it is given a slight nudge to the right, then it will eventually settle at the attractor point at the

origin. The separatrix that arrives at (π, 0) from the side of positive angular velocity settles there

in unstable equilibrium; the same applies to the separatrix that arrives at (π, 0) from the side of

negative angular velocity. Both lead to the scenario that the pendulum hangs vertically ‘upside

down’ at (π, 0), an extremely delicate scenario.

To analyze the behavior of the damped pendulum more quantitatively, let us first establish the

positions of the stable and unstable critical points, which from the phase portrait above, we know

are at nπ where n is either an even or an odd integer. For this, let us breakdown the second order

differential equation of motion into two first order equations as follows:

dθ

dt
= ν

dν

dt
= −2αν − ω2

0 sin θ

(20)

(21)

Given that the pendulum is in equilibrium at critical points, the angular velocity and angular

acceleration must both vanish. Hence dθ
dt and dν

dt are 0. Therefore, it follows from (20) that ν = 0,

and from (21) that sin θ = 0. The latter can only be satisfied if θ are integer multiples of π. Thus,

θ = nπ where n is an integer. Hence, the critical points occur at integer multiples of π.

Let us now zoom in on near a critical point c = nπ and look at the behavior of the phase curves

near that point. For this let us first expand sin θ around c using the Taylor expansion. For a

function f (θ), the Taylor expansion about a point c is given by,

f (θ) = f (c) +
(θ − c)

1!
f ′(θ)

∣

∣

∣

∣

θ=c

+
(θ − c)2

2!
f ′′(θ)

∣

∣

∣

∣

θ=c

+ · · · ,

where f ′(θ) is the first order differential of f (θ) with respect to θ and f ′′(θ) is the second order
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differential of f (θ) with respect to θ, and so on. Since f (θ) = sin θ, using the expansion up to the

first order (that is, to linear order) about the critical point c, we get,

sin θ = sin(c) + (θ − c) cos(c) = 0 + (θ − c) cos(c)

since sin(c) = 0 for c = nπ for any integer n. Now, about critical points where n = ne is an

even integer, cos(c) = cos(neπ) = 1 and about critical points where n = n0 is an odd integer,

cos(c) = cos(noπ) = −1. Therefore, the linear approximation to sine at the respective critical

points become,

sin θ = (θ − neπ) for ne even integer

sin θ = −(θ − noπ) for no odd integer

The first order form of the equations of motion then becomes

dθ

dt
= ν

dν

dt
= −2αν − ω2

0(θ − neπ) for ne even integer

dν

dt
= −2αν + ω2

0(θ − noπ) for no odd integer

(22)

(23)

(24)

Figure 10 shows the behavior of the phase flow near the stable critical point (2π, 0) according to

the full equation of motion [given by (20) and (21)] and the linear approximation [given by (22)

and (23)]. Judging by the figures side by side, we see that the linear approximation near the stable

critical point (2π, hence ne = 2 in this case) works very well and agrees with the full solution.

Similarly, Figure 11 shows the behavior of the phase flow near the unstable critical point (π, 0)
according to the full equation of motion [given by (20) and (21)] and the linear approximation

[given by (22) and (24)]. We again see that the linear approximation works well in comparison to

the full solution in describing the motion near the unstable critical point (π, hence no = 1 in this

case).
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Figure 10: Left: The behavior of the phase flow near the stable critical point (2π, 0) according to the full

equation of motion [given by (20) and (21) with α = 0.1 s−1 and ω0 = 1 s−1]. Right: The behavior of the

phase flow near the same stable critical point per the linear approximation [given by (22) and (23)]. The

phase flow near the stable equilibrium is well-described by the linear approximation.
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Figure 11: Left: The behavior of the phase flow near the unstable critical point (π, 0) according to the full

equation of motion [given by (20) and (21) with α = 0.1 s−1 and ω0 = 1 s−1]. Right: The behavior of the

phase flow near the same unstable critical point per the linear approximation [given by (22) and (24)]. The

phase flow near the unstable equilibrium is well-described by the linear approximation.
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Let us now turn to finding the explicit solutions to the linearly approximated equations of

motion above. Near the stable equilibrium points the behavior of the phase curves are deter-

mined by (22) and (23). These are equivalent to the second order differential equation of motion

θ̈ + 2αθ̇ + ω2
0(θ − neπ) = 0. Let λe = θ − neπ. Then θ̇ = λ̇e and θ̈ = λ̈e. The equation of motion

then becomes: λ̈e + 2αλ̇e + ω2
0λe = 0. As before, let us propose a solution of the form λe = ert.

Then the characteristic equation becomes r2 + 2αr + ω2
0 = 0. But this is the same equation as (3).

Therefore, the nature of the solutions will depend on whether
√

α2 − ω2
0 ⋚ 0. Thus, near the

stable equilibria, depending on the parameters, the phase curves will correspond to the under-

damped, critical, or overdamped motions discussed above.

Near the unstable equilibria the behavior of the phase curves are determined by (22) and (24).

These are equivalent to the second order differential equation of motion θ̈ + 2αθ̇ −ω2
0(θ − noπ) =

0. Now, let λo = θ −noπ. The equation of motion then becomes: λ̈o + 2αλ̇o −ω2
0λo = 0. Again, for

a solution of the form λo = ert to hold, the characteristic equation must satisfy r2 + 2αr − ω2
0 = 0.

The two roots of this quadratic equation are then r1 = −α +
√

α2 + ω2
0 and r2 = −α −

√

α2 + ω2
0.

Since the discriminant α2 + ω2
0 is always positive and that

√

α2 + ω2
0 > α, we infer that r1 > 0

and r2 < 0. Therefore, let r1 = u1 and r2 = −u2 where u1 > 0 and u2 > 0. The solution for

λo = θ − noπ then can be written in the form Beu1t + Ce−u2t where B and C are constants to be

determined via initial conditions. Therefore, the solutions near an unstable critical point take the

form,

θ = Beu1t + Ce−u2t + noπ (25)

θ̇ = Bu1eu1t − Cu2eu2t (26)

If the initial conditions near an unstable equilibrium point are θ0 and θ̇0, then, using the two

equations above with t = 0, we find the constants to be

B =
θ̇0 + u2(θ0 − noπ)

u1 + u2
, C =

−θ̇0 + u1(θ0 − noπ)

u1 + u2
.

The solution curves near the unstable equilibrium point π determined by the equations (25) and

(26) are shown in Figure 12.
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Figure 12: Phase curves for the damped pendulum near the unstable critical point π determined via

the linear approximation equations (25) and (26). The asymptotes (red) have been created with the initial

(t = 0) conditions θ0 = π and θ̇0 = ±0.001. The left and right branches (blue) have been created with the

initial conditions θ0 = π ± 0.1 and θ̇0 = 0; The top and bottom branches (blue) have been created with

the initial conditions θ0 = π and θ̇0 = ±0.07. For all these segments time runs to ±10 s from t = 0. The

parameters were set at α = 0.1 s−1 and ω0 = 1 s−1.

♣
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