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As is known, the general solution to the equation of motion of the simple pendulum, θ̈ =
−ω2 sin θ, does not have a closed form. (Here, θ is the angle measured from the downward

vertical and ω2 = g/l where g is the constant gravitational acceleration and l is the length of the

pendulum rod.) A closed form solution exists for small swings when sin θ can be approximated

by θ. In this essay we demonstrate how the period of the pendulum for a general swing that

leads to librations can be determined using the notions of arithmetic and geometric means. This

approach provides us with a very fast algorithm for computing the period, but most importantly,

introduces us to some beautiful mathematics involving elliptic curves and elliptic integrals. Not

surprisingly, we start with the kinetic and the potential energies of the pendulum, which are

respectively given by,

Ek =
1

2
ml2θ̇2, Ep = mgl(1− cos θ),

where m is the mass of the pendulum bob, l is the length of the pendulum rod, and g is the

gravitational acceleration (see Figure 1).
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Figure 1: An instantaneous position (P) of the simple pendulum of length l with mass m pivoted at O.

The angle measured from the downward vertical is θ. The potential energy of the pendulum is taken to be

zero at the bottom of the swing. T and mg are the tension on the weightless rod and the weight of the bob,

respectively. |Drawing by AD.

The sum of the energies, Ek + Ep can then be written ml2[ 1
2 θ̇2 + ω2(1 − cos θ)], where ω2 = g/l.

Thus, scaled by the constant factor ml2, the total energy (E ) of the pendulum at any given instant

can be written as
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E =
1

2
θ̇2 + ω2(1 − cos θ), (1)

where E has the same units as ω2: per second squared (s−2). The total energy is conserved since

we consider frictionless motion. Let the pendulum be released from rest at an angle θ0 so that

θ̇0 = 0. This angle determines the total energy E , and the energy is highest when the pendulum

is hanging vertically up at which θ0 = π. Thus Emax = ω2(1 − cos π) = 2ω2. Similarly, when the

pendulum is released at θ0 = 0, it has the lowest total energy Emin = ω2(1 − cos 0) = 0. In both

these cases the pendulum is in equilibrium, although this equilibrium is unstable when hanging

up vertically, and is stable when hanging down vertically. Therefore, these two cases do not lead

to librations or swings; hence, librations are only possible when 0 < E < 2ω2. Let us now define

a dimensionless parameter k such that,

k2 =
E

2ω2
.

Therefore, k = ±1 when the pendulum is hanging up in unstable equilibrium, and k = 0 when

it is hanging down in stable equilibrium. We can therefore consider 0 < k < 1 which would

correspond to librations or swinging motion of the simple pendulum. In addition, let us also

define a variable x such that,

x =
1

k
sin

θ

2
.

We can now ask what the value of x = x0 is when θ = θ0, which corresponds to the moment of

release, or in other words, at the points of maximum deflection of the pendulum during librations.

For this we notice that since 1 − cos θ0 = 2 sin2(θ0/2), at release or at maximum deflection,

E = ω2(1 − cos θ0) = ω2 · 2 sin2 θ0

2
=⇒

(

2ω2

E

)

sin2 θ0

2
=

1

k2
sin2 θ0

2
= 1.

But (1/k) sin(θ0/2) = x0. Therefore, x2
0 = 1, and hence, x0 = ±1 at release or at maximum

deflection. Therefore, x values take between [−1, 1] for librations of the simple pendulum with

x = 0 corresponding to the lowest point of the pendulum’s motion where θ = 0. Differentiating

x with respect to time t, we obtain,

ẋ =
θ̇

2k
cos

θ

2
.

Squaring this and using the identity cos2(θ/2) = 1 − sin2(θ/2) along with the definition for x,

we obtain, θ̇2/2 = 2k2 ẋ2/(1 − k2x2); also, 1 − cos θ = 2 sin2(θ/2) = 2k2x2, and by definition,

E = 2ω2k2. Substituting these terms in the expression for E , we obtain
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ẋ2 = ω2(1 − x2)(1− k2x2), 0 < k < 1, −1 ≤ x ≤ 1 Elliptic curves for librations. (2)

The above expression encapsulates the librations of the pendulum in the form of elliptic curves,

which look like distorted circles (see Figure 2); the elliptic curves, however, are not ellipses.
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Figure 2: Elliptic curves corresponding to the librations of the pendulum as defined by the expression (2)

for three different k values with ω2 = 1. The closer the k value is to 0 (with ω2 = 1) the more the

corresponding elliptic curve would approximate a circle of unit radius. Similarly, the closer the k value is to

1 (with ω2 = 1) the more the corresponding elliptic curve would approximate a parabola. However, k = 0

or k = 1 would not correspond to the librations of the pendulum.

From (2),

dt =
1

ω

dx
√

(1 − x2)(1 − k2x2)
.

The period (T) of the pendulum can therefore be written as,

T = 4

∫

lowest point

release point

dt =
4

ω

∫

1

0

dx
√

(1 − x2)(1 − k2x2)
. (3)

The integral in the above expression is known as the complete elliptic integral (Ice), which is a

function of k; hence,
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Ice(k) =

∫

1

0

dx
√

(1 − x2)(1 − k2x2)
. (4)

To find the period of the simple pendulum, then, we need to evaluate Ice. The amazing fact is,

that although we cannot evaluate this integral in closed form, it can be evaluated very quickly to

a high degree of accuracy using successive iterations of the arithmetic and geometric means of

two numbers which we will discuss below.

Let us first make the variable change x = sin φ; hence, dx = cos φ · dφ. The limits [0, 1] of x

corresponds to the limits [0, π/2] of φ. Substitution in (4) yields,

Ice(k) =

∫

π/2

0

dφ
√

1 − k2 sin2 φ
. (5)

Therefore, (3) can be written as,

T =
4

ω

∫

π/2

0

dφ
√

1 − k2 sin2 φ
,

= 4

∫

π/2

0

dφ
√

ω2 − ω2k2 sin2 φ
,

= 4

∫

π/2

0

dφ
√

ω2(cos2 φ + sin2 φ)− ω2k2 sin2 φ
,

= 4

∫

π/2

0

dφ
√

ω2 cos2 φ + ω2(1 − k2) sin2 φ
.

We now define a new angular frequency Ω > 0 such that Ω2 = ω2(1 − k2). Therefore,

T = 4

∫

π/2

0

dφ
√

ω2 cos2 φ + Ω2 sin2 φ)
. (6)

Before proceeding, let us delve a little on the nature of Ω. Given that we defined k2 = E/(2ω2),
it is the case that 1 − k2 = 1 − E/(2ω2). Thus,

ω2(1 − k2) = ω2 − E
2
= Ω2.
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Therefore,

ω2 − Ω2 = (ω − Ω)(ω + Ω) =
E
2

. (7)

Now, clearly, ω > 0 since it is determined by the finite positive values of the gravitational accel-

eration g and the pendulum length l. Since E > 0 for librations (though E also has to be less than

2ω2), it cannot be the case that Ω < 0, since per (7) that could lead to scenarios where E < 0,

which is impossible. Ω cannot be 0 either, since by definition it is equal to ω2(1 − k2), which is

positive since k can never equal 1 for librations. This leaves us with the conclusion that Ω > 0.

Thus, for librations: ω > 0, Ω > 0, and E > 0. According to (7), if E > 0, and both ω and Ω are

positive, then there is the further implication that ω > Ω. We collect these important conditions

below:

ω > 0, Ω > 0, ω > Ω.

We now initiate a new transformation: y = Ω tan φ; hence, dy = Ω(1 + tan2 φ) · dφ = 1
Ω (Ω2 +

y2) · dφ. The limits [0, π/2] of φ corresponds to the limits [0, ∞) of y. Substitution in (6) now

yields,

T = 4

∫

∞

0

dy

1
Ω (Ω2 + y2)

√

ω2 cos2 φ + Ω2 sin2 φ
,

= 4

∫

∞

0

dy

1
Ω (Ω2 + y2) cos φ

√

ω2 + Ω2 tan2 φ
,

= 4

∫

∞

0

dy
1
Ω (Ω2 + y2) cos φ

√

ω2 + y2
.

Now, since tan φ = sin φ/ cos φ, sin2 φ = cos2 φ tan2 φ. But sin2 φ + cos2 φ = 1. Hence, cos2 φ(1 +
tan2 φ) = 1 =⇒ cos2 φ(1 + y2/Ω2) = 1. Thus, cos2 φ = Ω2/(Ω2 + y2), and therefore,

cos φ = Ω/(
√

Ω2 + y2). Substituting this result for cos φ in the last expression, we arrive at,

T = 4

∫

∞

0

dy
√

(Ω2 + y2)(ω2 + y2)
,

which is beautifully symmetric in Ω ↔ ω. Since the integrand is an even function of y, the above

can be re-written as
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T = 2

∫

∞

−∞

dy
√

(Ω2 + y2)(ω2 + y2)
(8)

We now wish to reveal the hidden gem within this integral. It is that, if we let,

ω 7→ ω′ =
ω + Ω

2
, Ω 7→ Ω′ =

√
ω · Ω,

then,

∫

∞

−∞

dy
√

(Ω2 + y2)(ω2 + y2)
=

∫

∞

−∞

dy
√

(Ω′2 + y2)(ω′2 + y2)

That is, if ω and Ω are replaced by the arithmetic mean AM(ω, Ω) = (ω + Ω)/2 and the geo-

metric mean GM(ω, Ω) =
√

ω · Ω, respectively, then the integral in (8) remains invariant. Thus,

T = 2

∫

∞

−∞

dy
√

(Ω2 + y2)(ω2 + y2)
= 2

∫

∞

−∞

dy
√

(GM(ω, Ω)2 + y2)(AM(ω, Ω)2 + y2)
(9)

This is the secret to finding the period of the pendulum without attempting to integrate the

elliptic integral, for which a closed form solution does not exist anyway. Let us first see the

consequences of the above invariance and how it enables the evaluation of the period of the pen-

dulum. We will then provide a proof of the invariance of (9).

Let us consider the first iteration from ω to ω′ = (ω + Ω)/2. We have established previously

that ω > Ω. Thus, ω + Ω > 2Ω, which implies that (ω + Ω)/2 > Ω, and hence, ω′
> Ω. Since

Ω = 2ω′ − ω, it follows that ω′
> 2ω′ − ω, and hence, ω > ω′. We therefore conclude that after

the first iteration, AM(ω, Ω) = ω′ is less than ω.

Similarly, let us consider the first iteration from Ω to Ω′ =
√

ω · Ω. Again, since ω > Ω,

ω · Ω > Ω2, which implies that
√

ω · Ω > Ω, and hence, Ω′
> Ω. We therefore conclude that

after the first iteration, GM(ω, Ω) = Ω′ is greater than Ω.

So, although ω has decreased to ω′ = AM(ω, Ω) and Ω has increased to Ω′ = GM(ω, Ω) after

the first iteration, according to (9) the integral remains invariant, which in turn implies that the

period of the pendulum can be evaluated using (ω′, Ω′) just as it can by using (ω, Ω). Let

us assume that we continue the iterations such that we obtain the sequences ω0(= ω), ω1(=
ω′), ω2, · · · and Ω0(= Ω), Ω1(= Ω′), Ω2, · · · . Thus, for any natural number n (including 0),

ωn+1 =
ωn + Ωn

2
= AM(ωn, Ωn), Ωn+1 =

√

ωn · Ωn = GM(ωn, Ωn), n ∈ N0,
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where N0 is the set of natural numbers that include 0. By the previous verifications and by

induction we can conclude that ωn+1 < ωn and Ωn+1 > Ωn. Therefore, successive iterations

lead to a decreasing sequence of ωn and an increasing sequence of Ωn, both of which converge

to the same value in the limit n → ∞. To see that they converge to a common value, first

note that if a and b are positive real numbers such that a > b > 0, then the arithmetic mean

of these two numbers is greater than their geometric mean. That is, if a > b > 0, then it is

the case that a − b > 0, which implies that (a − b)2
> 0. Thus, a2 − 2ab + b2

> 0. Adding

4ab to both sides, we obtain a2 + 2ab + b2
> 4ab, which implies ((a + b)/2)2

> ab. Hence,

AM(a, b) = (a + b)/2 >

√
ab = GM(a, b). Therefore, for any n, the condition AM(ωn, Ωn) =

ωn+1 > Ωn+1 = GM(ωn, Ωn) is satisfied. Thus, ωn+1 − Ωn+1 > 0. Since Ωn+1 > Ωn, we

can further conclude that ωn+1 − Ωn > ωn+1 − Ωn+1. But ωn+1 = (ωn + Ωn)/2. Therefore,

(ωn + Ωn)/2 − Ωn > ωn+1 − Ωn+1, which implies (ωn − Ωn)/2 > ωn+1 − Ωn+1 > 0. Therefore,

by induction, we conclude,

0 < ωn − Ωn <
ω − Ω

2n
.

In the limit n → ∞, from the first half of the above inequalities we are led to conclude that,

ω∞ > Ω∞; from the second half of the above inequalities, however, we are led to conclude that,

ω∞ < Ω∞. This is a contradiction and hence both statements cannot be true. We have no choice,

then, than to declare that ω∞ = Ω∞. In other words,

lim
n→∞

ωn = lim
n→∞

Ωn = AGM(ω, Ω),

where AGM(ω, Ω) stands for the common limit known as the arithmetic-geometric mean.

Now let us look at (7) as we iterate. For any iteration n, (7) can be written as,

(ωn − Ωn)(ωn + Ωn) =
En

2
.

As we iterate, ωn and Ωn converge to AGM(ω, Ω) as demonstrated above. This means that the

difference (ωn − Ωn) become smaller and smaller with each successive iteration. As a result,

with each iteration, the energy En of the pendulum becomes smaller and smaller as well.

It must be noted that the pendulum with energy En is not our original pendulum but a hypothet-

ical pendulum to which we have iterated after n steps from the original. The iterated pendulums

are linked by the special property that they have the same period per (9). In this sense we may

regard the iterations as resulting in renormalized pendulums which are self-similar, thereby pro-

viding us with an example of the concept of renormalization, which is ubiquitous in quantum

and statistical field theories.
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Therefore, after a sufficient number of iterations we are able to consider the pendulum as effec-

tively having a very small amount of energy, which in turn corresponds to small swings. But

for small swings the pendulum acts as a simple harmonic oscillator for which the period can be

found exactly. This period, as is well-known, is equivalent to 2π over the angular frequency cor-

responding to small librations. In this particular case, given the iterations, this angular frequency

is none other than the limn→∞ ωn = limn→∞ Ωn = AGM(ω, Ω). But due to the invariance of

the integral in (9), the original period of the pendulum, the value of which we are interested in

computing in the first place, remains the same during the iterations. Hence we conclude that the

period of a pendulum described by ω and Ω can be found by,

T =
2π

AGM(ω, Ω)
, ω =

√

g

l
, Ω =

√

ω2 − E
2

, 0 < E < 2ω2. (10)

Thus, given the energy (E ) of the pendulum, its length (l), and the gravitational acceleration

(g), we can find the period of the pendulum by first computing ω and Ω, and then iterat-

ing the two numbers via the arithmetic mean ωn+1 = AM(ωn, Ωn) and the geometric mean

Ωn+1 = GM(ωn, Ωn) until the two sequences approach the common limit AGM(ω, Ω). The iter-

ation can be terminated when the desired degree of accuracy has been reached; the convergence

to AGM(ω, Ω) is very fast. Taking the reciprocal of that terminal value and multiplying it by

2π gives the period of the simple pendulum for any general libration. Table 1 shows several

iterations for a pendulum with ω = 1 s−1 and E = 1 s−2, and hence Ω =
√

1/2 s−1.

Iteration n ωn (s−1) Ωn (s−1)

0 1
√

1/2

1 0.8535533905932737 0.7768869870150187

2 0.8152201888041462 0.7958228171106102

3 0.8055215029573781 0.8006574746586167

4 0.8030894888079974 0.8018725597212382

5 0.8024810242646178 0.8021767343016064

6 0.8023288792831120 0.8022528031856259

Table 1: Finding the period via iteration for a pendulum with ω = ω0 = 1 s−1 and E = 1 s−2, and therefore

Ω = Ω0 =
√

1/2 s−1. This scenario corresponds to a pendulum released from rest at a 90◦ angle to its

downward vertical. (For a pendulum released from rest, E = ω2
0(1 − cos θ0) where θ0 is the release angle.)

The iterations yield ωn+1 = AM(ωn, Ωn) and Ωn+1 = GM(ωn, Ωn). At each successive iteration the values

tend closer and closer to the arithmetic-geometric mean AGM(ω, Ω), which to 3 decimal places can be

taken as 0.802 s−1. (These three first decimals are the same even after hundred iterations; in fact, ω27 and

Ω27 agree to sixteen decimal places.) The period of the pendulum is thus T ≈ 2π/(0.802 s−1) = 7.8 s. If the

small angle approximation is used, then T = 2π/ω0 = 6.3 s; hence, the actual value for the period differs

by about 24% relative to the small angle approximation.
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Let us now turn to proving the invariance of the integrals in (9). We thus have to show that

∫

∞

−∞

dy
√

(Ω2 + y2)(ω2 + y2)
=

∫

∞

−∞

dy
√

(GM(ω, Ω)2 + y2)(AM(ω, Ω)2 + y2)
. (11)

Let us first write the integral on the right hand side of (11) as,

∫

∞

−∞

dz
√

(ωΩ + z2)

[

(

ω+Ω
2

)2
+ z2

]

.

Let us now make the following variable change:

z =
1

2

(

y − ωΩ

y

)

, 0 < y < ∞.

Thus dz =
(

y2+ωΩ

2y2

)

dy. By substitution,

(

ω + Ω

2

)2

+ z2 =
(ω2 + y2)(Ω2 + y2)

4y2
,

ωΩ + z2 =
(ωΩ + y2)2

4y2
.

Thus,

∫

∞

−∞

dz
√

(ωΩ + z2)

[

(

ω+Ω
2

)2
+ z2

]

=

∫

∞

0

(ωΩ + y2) · dy

2y2
[

(ω2+y2)(Ω2+y2)
4y2 · (ωΩ+y2)2

4y2

]1/2
,

=

∫

∞

0

2 · dy
√

(ω2 + y2)(Ω2 + y2)
,

=

∫

∞

−∞

dy
√

(ω2 + y2)(Ω2 + y2)
.

This last expression is the left hand side of (11), thereby proving the invariance of the two inte-

grals.

♣


