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A simple harmonic oscillator such as a mass attached to a spring that oscillates back and forth

horizontally without any dissipative forces such as friction is well-known to have the maximal

speed (and minimal, that is, zero acceleration) as it passes the equilibrium point and the highest

acceleration (and minimal, that is, zero speed) at the end points where the spring is maximally

stretched. By analogy, then, a simple pendulum oscillating back and forth without any dissipa-

tive forces can similarly be expected to exhibit maximal speed (minimal acceleration) as it passes

the lowest point of its circular arc and maximal acceleration (minimal speed) at the highest points

of the arc where it reverses the direction of the swing. The goal of this essay is to investigate the

speed and the acceleration of the simple pendulum closer than it is generally described in the

literature. If the title of the essay is a give away, there is a counterintuitive surprise in store for

us.

To see this, let us first establish the kinematical equations. To do so let us assume that the origin

of the inertial frame I is at O where the pendulum is pivoted (see Figure 1). If we select a rotating

polar frame R defined by its origin and the associated triad of unit vectors {O, er, eθ, e3} where

er × eθ = e3 (hence, for a right-handed system, e3 points perpendicularly out of the plane of the

pendulum), then the position vector of the pendulum mass P is given by rP/O = ler where l is

the fixed length of the pendulum.
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Figure 1: An instantaneous position (P) of the pendulum (of length l) with the unit vectors of the polar

frame er and eθ marked on the oscillation plane. er × eθ = e3 (hence, for a right-handed system, e3 points

perpendicularly out of the plane of the pendulum). The coordinate frame has origin O, which is the pivot

point. The potential energy of the pendulum is taken to be zero at the bottom of the swing. T and W are

the tension on the weightless rod and the weight of the bob, respectively. |Drawing by AD.
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The velocity of the pendulum can then be computed with respect to the inertial frame by taking

the time derivative of rP/O with respect to the inertial frame. Since er changes its direction with

respect to the inertial frame as the pendulum swings, we obtain

IvP/O =
Id

dt
rP/O = l

Id

dt
er = l

(Rd

dt
er +

I
ω
R × er

)

= l
(

0 + θ̇e3 × er
)

= lθ̇eθ, (1)

where I
ω
R is the angular velocity vector of the pendulum, which is equivalent to θ̇e3. The rate

of change of the unit vectors er, eθ , and e3 with respect to the rotating frame R vanishes since

these vectors are attached to it. Differentiating the above expression again with respect to time in

the inertial frame, we obtain the acceleration vector as,

IaP/O =
Id

dt
vP/O = l

Id

dt

(

θ̇eθ

)

= −lθ̇2er + lθ̈eθ, (2)

where we have used

Id

dt
eθ =

(Rd

dt
eθ +

I
ω
R × eθ

)

=
(

0 + θ̇e3 × eθ

)

= −θ̇er.

Before proceeding, let us recapture the main results:

vP/O = lθ̇eθ,

aP/O = −lθ̇2er + lθ̈eθ .

Now, considering the dynamics, the tension and weight vectors can be written as T = −Ter and

W = mg cos θer −mg sin θeθ, respectively. Combining the dynamics and kinematics via Newton’s

second law, where FP = T + W = mIaP/O, we obtain, after equating the respective coefficients

of the unit vectors, the scalar equations of motion:

θ̈ = −
g

l
sin θ, T = mg cos θ + mlθ̇2. (3)

If the pendulum is released from rest at an initial angle θ0 to the downward vertical where

0 < θ0 < π, then at any other angle θ, by energy conservation, we have,

mgl(1− cos θ0) =
1

2
mv2 + mgl(1− cos θ),

from which we find,

v2 = 2gl(cos θ − cos θ0). (4)

From (1) it follows that v = lθ̇. Substituting this expression in (4) yields,
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θ̇
2 =

2g

l
(cos θ − cos θ0).

Denoting the magnitude of the acceleration of the pendulum as a, it follows from (2) that

a2 = l2
θ̇

4 + l2
θ̈

2.

Substituting the expressions θ̈ = −
g
l sin θ and θ̇

2 =
2g
l (cos θ − cos θ0) in the expression for a2 and

simplifying, we arrive at,

a2 = g2
(

1 + 3 cos2
θ − 8 cos θ · cos θ0 + 4 cos2

θ0

)

. (5)

The speed and the magnitude of the acceleration of the pendulum can thus be summarized as,

v =
√

2gl(cos θ − cos θ0), 0 < θ0 < π

a = g
√

(1 + 3 cos2 θ − 8 cos θ · cos θ0 + 4 cos2 θ0).

(6)

(7)

(Note that only the positive square roots are considered given our interest in the magnitudes.)

An important observation immediately stands out: which is, that the speed of the pendulum

varies as the square root of the length of the pendulum while the magnitude of the acceleration

is independent of the length of the pendulum. At θ = ±θ0 the speed clearly vanishes. That

is, at the end points of motion on either side of the downward vertical the pendulum comes to

a stop before reversing its course. For the speed to attain its highest value, cos θ has to be a

maximum. Therefore, the speed is highest when cos θ = 1 which in turn implies that θ = 0. Thus

the pendulum attains the maximum speed at the bottom of its swing. This latter conclusion also

follows by differentiating v2 with respect to θ and setting it to zero, which yields a stationary

point at θ = 0. Taking the second derivative of v2 with respect to θ it follows that the speed at

θ = 0 is a maximum since,

d2

dθ2
v2

∣

∣

∣

∣

∣

θ=0

= −2gl < 0.

The reader may consider these observations as intuitive. This intuition regarding pendulum’s

motion may breakdown as we consider its acceleration. To see this, let us compute where the

minima or the maxima of acceleration occur during pendulum’s motion. Differentiating (5) with

respect to θ we obtain,

d

dθ
a2 = 2g2 sin θ(4 cos θ0 − 3 cos θ).
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Thus, stationary points in acceleration occur at either sin θ = 0 or at cos θ = (4/3) cos θ0. These

points correspond to θ = 0 and θ = cos−1[(4/3) cos θ0], respectively. Taking the second derivative

of a2 with respect to θ, we obtain,

d2

dθ2
a2 = 2g2

[

4 cos θ0 cos θ + 3(sin2
θ − cos2

θ)
]

.

Therefore,

d2

dθ2
a2

∣

∣

∣

∣

∣

θ=0

= 2g2 [4 cos θ0 − 3] .

For a to be a minimum at θ = 0 the left side of the above expression has to be > 0. This in turn im-

plies that cos θ0 > 3/4, or in other words, θ0 < cos−1(3/4). The value of cos−1(3/4) ≈ 41.41◦ ≈
0.72 rad. Thus the acceleration of the pendulum is a minimum at the bottom of the swing if

the pendulum is released at an angle (to the downward vertical) below cos−1(3/4) ≈ 41.41◦ ≈
0.72 rad. Consequently, the acceleration a is a maximum at θ = 0 when θ0 > cos−1(3/4). The be-

havior of acceleration is therefore not as intuitive as that of speed of the pendulum and whether

it is a minimum or a maximum at the bottom of the swing depends on its release angle. In sum-

mary, if the pendulum is released from rest below the critical angle θc = cos−1(3/4) ≈ 41.41◦

then its acceleration is a minimum at the bottom of the swing; if it is released above the critical

angle θc, then the acceleration attains a maximum at the bottom of the swing.

At the stationary point θ = cos−1[(4/3) cos θ0],

d2

dθ2
a2

∣

∣

∣

∣

∣

θ=cos−1[(4/3) cos θ0]

= 2g2
[

3 − (16/3) cos2
θ0

]

.

For a to be a minimum at θ = cos−1[(4/3) cos θ0] the left side of the above expression has

to be > 0. This in turn implies that cos θ0 < 3/4, or in other words, θ0 > cos−1(3/4). For

cos θ = (4/3) cos θ0 to hold we must have (4/3) cos θ0 < 1 (we rule out (4/3) cos θ0 = 1 since we

take θ > 0). This condition again leads to cos θ0 < 3/4. Thus the magnitude of the acceleration

is a minimum at θ = cos−1[(4/3) cos θ0] when θ0 > cos−1(3/4); that is when the release angle is

above the critical angle θc. At the stationary point θ = cos−1[(4/3) cos θ0] there is no solution for

a that maximizes it. Also, at θ = 0 or at θ = cos−1[(4/3) cos θ0], a is neither a minimum nor a

maximum if θ0 = θc = cos−1(3/4). At θ = θ0 the magnitude of acceleration is simply a = g sin θ0.

The reason for this is clear: at θ = θ0 the angular speed θ̇ = 0 and therefore only the tangential

(eθ) component of the acceleration remains, which is equivalent to g sin θ0 in magnitude. We

summarize these results in the next page.
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Summary of the dynamics

1. v = 0 at θ = θ0 for all release angles θ0.

2. vmax =
√

2gl(1− cos θ0) at θ = 0 for all release angles θ0.

3. a = g sin θ0 at θ = θ0 for all release angles θ0.

4. amin = 2g(1− cos θ0) at θ = 0 if θ0 < θc = cos−1(3/4).

5. amax = 2g(1− cos θ0) at θ = 0 if θ0 > θc = cos−1(3/4).

6. amin = g
√

1 − 4
3 cos2 θ0 at θ = cos−1[(4/3) cos θ0] if θ0 > θc = cos−1(3/4).

7. a is neither a minimum nor a maximum at θ = 0 if θ0 = θc = cos−1(3/4).

Figures 2 and 3 show the variation of speed and the magnitude of the acceleration of the simple

pendulum against θ for several release angles θ0.

Figure 2: The variation of the pendulum speed v (in ms−1) against angle θ (measured with respect to the

downward vertical in radians) for several release angles θ0 with l = 2 m and g = 9.81 ms−2 when the

pendulum has been released from rest: black (θ0 = π/2 rad = 90◦), red (θ0 = π/3 rad = 60◦), green

(θ0 = θc = cos−1(3/4) ≈ 41.41◦), blue (θ0 = π/6 rad = 30◦), olive (θ0 = π/9 rad = 20◦). The speed is a

maximum at θ = 0 – that is, at the bottom of the swing – regardless of the release angle θ0.
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Figure 3: The variation of the pendulum’s magnitude of acceleration a (in ms−2) against angle θ (measured

with respect to the downward vertical in radians) for several release angles θ0 with g = 9.81 ms−2 when

the pendulum has been released from rest: black (θ0 = π/2 rad = 90◦), red (θ0 = π/3 rad = 60◦), green

(θ0 = θc = cos−1(3/4) ≈ 41.41◦), blue (θ0 = π/6 rad = 30◦), olive (θ0 = π/9 rad = 20◦). a is a minimum

at θ = 0 – that is, at the bottom of the swing – when θ0 < θc = cos−1(3/4) (olive and blue curves). This

minimum turns into a maximum at θ = 0 when θ0 > θc = cos−1(3/4) (red and black curves). In this latter

case, a is minimized at θ = ± cos−1[(4/3) cos θ0] (red and black curves). a is neither a minimum nor a

maximum at θ = 0 if θ0 = θc = cos−1(3/4) (green curve).

Further Reading: For establishing the equations of motion as done in this essay, the book En-

gineering Dynamics: A Comprehensive Introduction (Princeton University Press, 2011) by Jeremy

Kasdin and Derek Paley is highly recommended. It follows a very systematic approach in setting

up reference frames, coordinate systems, and finding equations of motions of physical systems

with great clarity.

♣


