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1 A Snippet from History

Ever since humans gazed up they have grappled to come to grips with the motion of the objects

in the sky. The Sun, the moon, the planets, and the stars all move in a seemingly regular motion

around the Earth. The apparent motion of these bodies around the Earth is largely responsible

for the belief of the ancients that the Earth is at the center of the universe; hence the geocentric

universe. Similarly, the difficulty of feeling or observing that the Earth is moving through space

gave rise to the belief that the Earth is immovable; hence the geostatic universe. We invite the

reader to transform back in time, and imagine, without all the current understanding about the

universe, the celestial and terrestrial movements of objects – what conclusions would you reach

regarding these objects and their motions, including that of the Earth?

Earthlings do not experience motion of the Earth about its axis or around the Sun, and hence, that

it is not in motion was a belief-system that was natural. Claudius Ptolemy (c. 100 – c. 170 AD)

positioned the Earth at the center of the universe and at rest in his text, Almagest. In Ptolemy’s

geocentric and geostatic model of the universe the Sun, the moon, and the planets moved around

the Earth in complicated orbits needed to account for the observations such as the retrograde1

motion of Mars, his ultimate goal being the quantitative prediction of the positions of the heav-

enly bodies at any given time as observed from the Earth.

Long before Nicholas Copernicus (1473 – 1543) moved the Sun to the center of the universe and

made the Earth move around it, Ptolemy was aware that one can make the Earth spin about its

1Retrograde motions are the apparent reversals in motion of the planets as observed from the Earth.
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axis to account for the daily motions of the objects in the sky. Here, however, Ptolemy ran into

a great difficulty regarding the problem of motion of the Earth. If the Earth spun about its axis,

“animals and other weights would be left hanging in the air, and the Earth would very quickly

fall out of the heavens. Merely to conceive such things makes them appear ridiculous.”2 This

statement by Ptolemy shows one of the great challenges in detecting the motion of an object

while being a rider of that object, in this case, the Earth. Thus, making the Earth go around the

Sun according to the Copernican heliocentric model does not trivially resolve the objections to its

motion. Critiques argued that if the Earth is in motion, then an object thrown straight up should3

land behind the thrower, for during the time the object is in flight the Earth has moved past the

point in space at which it was thrown. Our common experience shows that this is not the case –

a ball thrown straight up will land in the hands of the thrower. Tea poured inside an airplane,

which moves at a constant speed smoothly on a straight path will land in a cup just as it would

land in the comfort of one’s home.

With all we know today about Earth’s motion around the Sun, it is easy for us to not appreciate

the difficulty faced by the early physicists4 regarding its motion. The apparent inability to detect

Earth’s motion in reference to other objects in the sky was extended by Galileo Galilei (1564 –

1642) in his text Dialogue Concerning the Two Chief World Systems. In the Dialogue, a conversation

and a debate take place among three individuals: Salviati, who argues for the heliocentric model

of Copernicus; Simplicio, who argues for the geocentric model of Ptolemy and other ancient ideas

of motion; and Sagredo, a layman, who listens to both sides of the argument posing intelligent

questions to both Salviati and Simplicio. In it, Salviati asks Simplicio and Sagredo to imagine a

ship moving on the calm seas5:

For a final indication of the nullity of the experiments brought forth, this seems to me the

place to show you a way to test them all very easily. [The nullity that Salviati alludes to is

the difficulty of distinguishing a state of motion from a state of rest.] Shut yourself up with

some friend in the main cabin below decks on some large ship, and have with you there some

flies, butterflies, and other small flying animals. Have a large bowl of water with some fish

in it; hang up a bottle that empties drop by drop into a narrow-mouthed vessel beneath it.

With the ship standing still, observe carefully how the little animals fly with equal speed to all

sides of the cabin. The fish swim indifferently in all directions; the drops fall into the vessel

beneath; and, in throwing something to your friend, you need throw it no more strongly in one

direction than another, the distances being equal; jumping with your feet together, you pass

equal spaces in every direction. When you have observed all these things carefully (though

there is no doubt that when the ship is standing still everything must happen in this way), have

the ship proceed with any speed you like, so long as the motion is uniform and not fluctuating

this way and that. You will discover not the least change in all the effects named, nor could you

2The Eye of Heaven, Owen Gingerich, American Institute of Physics, New York, 1993, pg. 5.
3We take that the effects of air resistance can be ignored for all practical purposes. Ideally, all experiments of concern

take place in a vacuum, without worrying how humans and other beings can function in such an environment.
4The field of physics and the practitioners of it, physicists, were called natural philosophy and natural philosophers,

respectively, in the past. The modern terms became established toward the late 19th century.
5Dialogue Concerning the Two Chief World Systems, Galileo Galilei; Stillman Drake (translator), Stephen J. Gould (series

editor), The Modern Library, New York, 2001, pg. 216-218.
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tell from any of them whether the ship was moving or standing still. In jumping, you will pass

on the floor the same spaces as before, nor will you make larger jumps toward the stern than

toward the prow even though the ship is moving quite rapidly, despite the fact that during the

time that you are in the air the floor under you will be going in a direction opposite to your

jump. In throwing something to your companion, you will need no more force to get it to him

whether he is in the direction of the bow or the stern, with yourself situated opposite. The

droplets will fall as before into the vessel beneath without dropping toward the stern, although

while the drops are in the air the ship runs many spans. The fish in their water will swim

toward the front of their bowl with no more effort than toward the back, and will go with equal

ease to bait placed anywhere around the edges of the bowl. Finally the butterflies and flies

will continue their flights indifferently toward every side, nor will it ever happen that they are

concentrated toward the stern, as if tired out from keeping up with the course of the ship, from

which they will have been separated during long intervals by keeping themselves in the air.

And if smoke is made by burning some incense, it will be seen going up in the form of a little

cloud, remaining still and moving no more toward one side than the other. The cause of all

these correspondences of effects is the fact that the ship’s motion is common to all the things

contained in it, and to the air also. That is why I said you should be below decks; for if this

tool place above in the open air, which would not follow the course of the ship, more or less

noticeable differences would be seen in some of the effects noted. No doubt the smoke would

fall as much behind as the air itself. The flies likewise, and the butterflies, held back by the

air, would be unable to follow the ship’s motion if they were separated from it by a perceptible

distance. But keeping themselves near it, they would follow it without effort or hindrance; for

the ship, being an unbroken structure, carries with it a part of the nearby air. For a similar

reason we sometimes, when riding horseback, see persistent flies and horseflies following our

horses, flying now to one part of their bodies and now to another. But the difference would be

small as regards the falling drops, and as to the jumping and the throwing it would be quite

imperceptible.

After four days of conversation and debate where varying degrees of understanding have been

reached, and more questions remain unanswered, Sagredo declares: “... according to our custom,

let us go and enjoy an hour of refreshment in the gondola that awaits us.” Thus ends Galileo’s

Dialogue, which argues in favor of Copernicus’ heliocentric model and highlights the inability

to distinguish physical phenomena according to observers’ state of motion. By implication, to

Galileo, this means that the Earth can very well move around the Sun although that motion may

not be detectable for those living on it. The reader may detect some challenges here. What is

indistinguishable is uniform motion (that is, motion at a constant speed along a straight line) from

that of the state of rest. An object moving along a circle does not qualify as uniform motion due

to the changing nature of the direction of travel. However, Earth’s motion about the Sun can

be taken as approximately uniform, as we will show later. Galileo’s argument, then, is that not

feeling the motion of the Earth is not a good reason to reject its motion around the Sun. If we

are to consider only the indistinguishability of uniform motion from that of rest, then we can

summarize Galileo’s argument as a principle of nature:
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Figure 1: The frontispiece and the title page of Galileo Galilei’s Dialogue Concerning the Two Chief

World Systems (1632) shows Aristotle (left), Ptolemy (middle), and Copernicus (right) in debate

and discussion. Ptolemy holds a model of his geocentric model of the universe while Copernicus

holds his heliocentric model.

Galileo’s Principle of Relativity

Mechanical laws of nature are the same for observers in uniform motion and for observers

at rest. Stated differently, there is no experiment one can perform which will indicate

whether one is in uniform motion or is at rest.

The term Mechanical laws is important in Galileo’s principle of relativity since the understanding

of the electromagnetic phenomena were at its infancy during his time and holds the key to its

extension by the later protagonists in the story of relativity. As expounded by Galileo, it is not

possible to distinguish uniform motion from that of rest using any mechanical experiments. This

is a profound step in the understanding of nature, especially when set in its historical context.
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At the time of Galileo, the prevailing notions of how the world works were based on the physics

of Aristotle (384 BC – 322 BC), which in turn were based on commonsense experiences combined

with logic. To Aristotle, the state of rest is natural, whereas motion is unnatural. Thus, to Aris-

totle, there is a fundamental distinction between being at rest, and being in motion. Galileo’s

principle of relativity removes this distinction putting both the state of rest and the state of uni-

form motion on an equal footing.

Putting the state of rest and the state of uniform motion on an equal footing, however, raises the

question of with respect to what do we observe a state of rest or a state of uniform motion? The answer

to this question taxed Isaac Newton (1643 – 1727), who proposed that the states of motion (rest,

uniform motion, and acceleration) are relative to the immovable space, which he called absolute

space, within which all things in the universe are embedded in; therefore, rest or motion can have

an absolute meaning with regards to the question of “with respect to what?” However, since one

cannot do any mechanical experiment to distinguish whether one is at rest or is moving in uni-

form motion with respect to absolute space, this raises an epistemological – that is, “how do we

know what we know” – question according to Gottfried Wilhelm Leibniz (1646 – 1716). Since

the existence of absolute space cannot be established given the indistinguishability of the states

of rest and uniform motion, Leibniz’s proposal was to disregard absolute space and consider

only the relative motions between observers. That is, only the motions that one can observe with

respect to one another matters. A passenger on a uniformly moving train is free to consider him

or herself as at rest and the station to be moving at a uniform speed along a straight line relative

to the train. A person standing still relative to the station is free to consider him or herself as at

rest and the train to be moving at a uniform speed along a straight line relative to the station.

Both will obtain the same results if they perform identical mechanical experiments: for example,

tea poured into a cup will land in the cup without spilling on the floor, a ball thrown straight

up will land straight back in the hands, and a cord hanging straight down from the respective

ceilings will remain vertical without slanting to one side or another.

Galileo’s principle of relativity very nearly applies to mechanical phenomena on Earth. There-

fore, the Earth can be effectively considered to be in uniform motion so that it is not trivial to

establish its movement through space using earthly observations. As described earlier, the think-

ing of the ancients that the Earth is immovable arose from observing daily phenomena, one of

which is the falling of bodies. If one throws a rock vertically upwards, then one is able to catch it

when it comes back down. How would that be possible if the Earth is moving while the rock is

up in the air? Wouldn’t the rock land “behind” the thrower if the Earth is moving?

The equatorial radius of the Earth is about 6, 378 km (≈ 3, 963 miles). Considering Earth’s diurnal

(daily) rotation, it takes about 24 hours for a point on Earth’s surface to complete a full revolution

about its axis. Therefore, a person at the equator rotates at a speed of 6378× 2π/24 ≈ 1670 km/hr

(≈ 1038 miles/hr). This is equivalent to about 1522 feet/s. Now, if this person at the equator

throws a rock vertically, which, say, takes one second to go up, then it will take another second

to come back down. But during this two-second time interval, the Earth, and hence our thrower,

has moved about 3044 feet (≈ 0.58 miles or 0.93 km) from the point of launch. So, wouldn’t the
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rock land close to a kilometer or half-a-mile “behind” the thrower? If one takes into account the

motion of the Earth around the Sun, the effect is even more dramatic. As one may verify with

an orbital radius of about 150 × 106 km (93 × 106 miles), the Earth moves at a speed of about 30

km/s (≈ 19 miles/s) along its nearly circular orbit. This implies, per the earlier experiment, that

the thrown rock has to land about 60 km (≈ 38 miles) “behind” the thrower. Our experience,

however, contradicts these expectations; rocks thrown straight up seem to land straight down in

a such a way that we are able to catch them; games that involve throwing or hitting balls would

otherwise not be feasible.

Since Earth’s angular speed due to its rotation is quite steady, its angular acceleration nearly van-

ishes; thus, the acceleration tangential to the Earth’s surface due to its rotation nearly vanishes.

Also, since the angular speed of the Earth’s rotation about its axis is small [2π rad/(86400 s) ≈
7.3 × 10−5 rad/s] its square is even smaller; hence, the radial acceleration of a point on the

Earth’s surface is also small; it is about 6378 × 103 × (7.3 × 10−5)2 ≈ 0.03 m/s2. Therefore, the

acceleration of the Earth due to its daily rotation is practically negligible. Considering the motion

of the Earth around the Sun in its nearly circular orbit, again, the angular speed due to its or-

bital motion is quite steady; thus the acceleration tangential to the Earth’s orbit nearly vanishes.

What is left is largely the centripetal acceleration toward the Sun, which is also small; it is about

150 × 109 × (2 × 10−7)2 ≈ 0.006 m/s2. Therefore, the acceleration of the Earth due to its orbital

motion is also practically negligible. So, for the dwellers on Earth, it can be effectively considered

as a uniformly moving platform in space. In other words, short-duration projectiles would not

easily reveal the motion of the Earth itself, just as Galileo suspected.

Our goal in this essay is to analyze the motion of falling bodies as described by observers in plat-

forms that are either at rest or are moving. Regarding movement, we will consider both uniform

and accelerated motion. For this purpose we must first introduce reference frames relative to

which all motion is analyzed. Among these reference frames, a special class known as inertial

frames play a fundamental role in that the Galilean principle of relativity and Newton’s second

law of motion are valid only in such frames of reference. We take inertial frames to be either

at rest or to be moving uniformly in a straight line with respect to absolute space. Therefore, if

two frames are inertial with respect to absolute space, then they are inertial with respect to each

other. We will then show how Newton’s second law is modified in non-inertial frames. These

non-inertial frames may be translating and/or rotating with respect to inertial frames. Four types

of motion are analyzed using the resulting expressions: (a) a ball thrown vertically upward in a

train car moving at constant velocity relative to the station, (b) a ball thrown vertically upward in

a train car moving at constant acceleration relative to the station, (c) a ball dropped from a tower,

and (d) a ball thrown vertically upward at a point on the surface of the Earth.
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2 Reference Frames: Inertial & Non-Inertial

All motion must be described with respect to reference frames. A reference frame is defined as

consisting of an origin and three orthogonal unit vectors6 whose directions are fixed in the frame.

Therefore, any time derivative of the unit vectors of a frame taken with respect to the frame itself

vanishes. Let us formalize this important definition as follows:

Reference Frame: definition

In three-dimensional space, let R be a reference frame defined by the origin O and the

fixed orthogonal unit vector triad ei (i = 1, 2, 3). Thus, R ≡ {O, e1, e2, e3}, where distances

to points in space are measured with respect to O and

Rd

dt
ei = 0, i = 1, 2, 3.

Here, the operator
Rd
dt denotes the fact that the time derivative is taken with respect to the

reference frame R.

It is important to note that the unit vectors ei in the above definition are only fixed in the associ-

ated reference frame R. These unit vectors may be changing over time with respect to a different

reference frame R′, in which case
R′

d
dt ei 6= 0. We now define the inertial reference frame:

Inertial Reference Frame: definition

An inertial reference frame, I , is a frame of reference that is either at rest or moves at a

constant velocity with respect to absolute space; therefore, its defining orthogonal unit

vector triad is fixed in relation to absolute space (practically, in relation to fixed stars).

Reference frames that are inertial with respect to absolute space are inertial to each other.

The Galilean principle of relativity and the form F = ma of Newton’s second law apply

only to mechanical phenomena observed in inertial frames of reference. Here, F is the

total force on a point particle, m is the mass of the particle, and a is the acceleration of the

particle as measured with respect to an inertial frame of reference.

In Newtonian mechanics, once synchronized, the clocks in two reference frames read the same

time irrespective of their state of motion. This is the notion that Newton stated as absolute time

that is common to all observers in reference frames. In other words, in Newtonian mechanics,

time is not relative. Absolute time (as well as absolute space) is removed in Einstein’s theory

of relativity where (once synchronized) clock readings between events differ in reference frames

with differing states of motion (which is the case even among different inertial frames). Therefore,

6We denote vectors in bold font; hence, v is a vector with magnitude v.
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in Einstein’s relativity, time is relative.

3 Newton’s Second Law: Translations

Let us denote the position vector of a point Pi with respect to another point Pj in absolute space

as r
Pi/Pj

. Hence, r
Pi/Pj

can be represented as a line with an arrowhead at the end which extends

from Pj to Pi. The starting point of all computations in kinematics and dynamics, in the Newto-

nian framework, is the identification of position vectors of particles with respect to the origins of

frames of reference. The time derivatives of these position vectors with respect to various frames

would then yield the necessary velocities and accelerations of the particles as measured in those

frames.

We first put this approach to practice in the following context where we derive the form of New-

ton’s second law in a reference frame which moves rectilinearly with respect to an inertial frame.

Such a frame is said to be in translation with respect to the inertial frame. Further, let us take the

motion of a particle to take place on the (two-dimensional) plane with the inertial and translating

frames also located on the same plane such that the orthogonal unit vector triads of the inertial

and the translating frames are parallel to each other. Our goal, then, is to describe the motion of

the particle as observed in these two frames. Figure 2 shows the set up in detail.

First, let us describe the motion of the point particle P with respect to the inertial frame I ≡
{O, ex, ey, ez}. Note that we are considering a right-handed coordinate system so that ez points

out of the X-Y plane (page). Let the position vector of the particle with respect to the origin of

the inertial frame be r
P/O

. If the coordinates of the particle as observed in the inertial frame is

P = (x, y, 0)
I

(z = 0 since the motion takes place on the X-Y plane), then

r
P/O

= xex + yey + 0ez = xex + yey. (1)

Let us now compute the velocity of the particle at any instant with respect to the inertial frame.

This is given by,

Id

dt
r

P/O
= Iv

P/O
=

( Id

dt
x

)

ex + x

( Id

dt
ex

)

+

( Id

dt
y

)

ey + y

( Id

dt
ey

)

.

Now,

Id

dt
x =

dx

dt
= ẋ,

Id

dt
ex = 0;

Id

dt
y =

dy

dt
= ẏ,

Id

dt
ey = 0.

Since x and y are scalars, it does not matter with respect to what frame of reference the time

derivatives are taken. Therefore ẋ and ẏ do not have the frame index on them. The time derivative
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bP = (x, y)
I
= (x′, y′)

R

Y

I

X

ey

ex

O

r
P/O

r
O′/O

R

Y′

X′

ey′

ex′
O′

r
P/O′

Iv
O′/O

Figure 2: A reference frame R ≡ {O′, ex′ , ey′ , ez′} translating (hence, not rotating) on the plane relative to

the inertial reference frame I ≡ {O, ex , ey, ez}. The green arrow shows the instantaneous velocity (Iv
O′/O

) of

the translating reference frame relative to the inertial frame. The goal is to describe the motion of the point

particle P as observed in the two frames of reference; the coordinates of P as observed in the respective

reference frames are: P = (x, y)I = (x′, y′)R . The two reference frames and the particle are situated on the

same plane. The unit vector triads of the two frames are oriented such that ex = ex′ , ey = ey′ , and ez = ez′ .

The unit vectors ez and ez′ point out of the plane (page). The respective position vectors are marked. |Drawing

by AD.
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of unit vectors vanish since the derivatives are taken with respect to the inertial frame in which

the unit vectors are fixed. Thus, the velocity of the particle with respect to the inertial frame is

Id

dt
r

P/O
= Iv

P/O
= ẋex + ẏey (2)

Taking the time derivative of the above expression with respect to the inertial frame and following

the same approach, the acceleration of the particle at any instant with respect to the inertial frame

is

Id

dt
Iv

P/O
= Ia

P/O
= ẍex + ÿey. (3)

Now, in an inertial frame, Newton’s second law applies by definition:

Newton’s Second Law in an Inertial Reference Frame: definition

If P is a point particle with mass mP , FP is the total force acting on it, and Ia
P/O

is the

acceleration of P as determined by an observer located at the origin O of the inertial frame

I , then Newton’s second law in the inertial reference frame takes the form

FP = mP
Ia

P/O
. (4)

This, of course, is the familiar F = ma, which is based on experimental evidence and cannot be

derived. Aristotle believed that force is proportional to speed, and therefore, in the physics of

Aristotle, an ever-present (net) force is required for an object to be in motion. It took over a thou-

sand years from the time of Aristotle to arrive at the realization that the true nature of motion is

such that force is proportional to acceleration, and therefore, an object will move rectilinearly at

constant speed even in the absence of any net force on the object.

Note that Newton’s second law applies only to point particles where we do not consider any

dimensions of the bodies concerned. However, this is not an impractical abstraction since many

questions in mechanics can be solved by modeling large objects as point particles; for example,

given the vast distance between them, the Earth can be considered as a point particle when an-

alyzing its motion around the Sun.7 The reader may wonder at this point about the seemingly

cumbersome notation that we have adopted. This notation, however, will pay great dividends as

we analyze more complicated motions since it allows us to keep track of what we are doing and

with respect to which frames of reference every step of the way. This ultimately allows us to be

systematic in our approach to kinematics and dynamics, and thereby forego somewhat ad hoc

methods of reasoning typically utilized in analyzing motion.

7The Earth’s radius is only about 0.004% compared to its orbital radius.
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Now that we have defined Newton’s second law for a point particle with respect to the inertial

frame, let us look at its form with respect to the translating frame R ≡ {O′, ex′ , ey′ , ez′}. For this,

we need to consider the position vector of the particle with respect to the origin of the translating

frame. Applying vector addition to the triangle formed by the points OPO′ (see Figure 2), we

have

r
P/O

= r
O′/O

+ r
P/O′ .

Taking the time derivative of this expression with respect to the inertial frame yields,

Id

dt
r

P/O
=

Id

dt
r

O′/O
+

Id

dt
r

P/O′ .

Now,

Id

dt
r

P/O
= Iv

P/O
and

Id

dt
r

O′/O
= Iv

O′/O
,

where Iv
P/O

is the velocity of the particle with respect to the inertial frame I and Iv
O′/O

is the

velocity of the translating frame with respect to the inertial frame I . To find
I d
dt r

P/O′ , note that

since P = (x′, y′)
R

,

r
P/O′ = x′ex′ + y′ey′ .

Now, recall that the unit vector triads between the two frames were oriented such that they are

parallel. Therefore, ex′ = ex, ey′ = ey, ez′ = ez, and remains so since frame R is only translating

(and hence, not rotating) on the plane with respect to the inertial frame I . Thus

r
P/O′ = x′ex + y′ey.

Since the time derivative with respect to the inertial frame I does not affect the unit vectors

attached to it,

Iv
P/O′ =

Id

dt
r

P/O′ = ẋ′ex + ẏ′ey = ẋ′ex′ + ẏ′ey′ =
Rd

dt
r

P/O′ =
Rv

P/O′ . (5)

Combining these results we obtain the Newtonian velocity addition formula Iv
P/O

= Iv
O′/O

+
Rv

P/O′ . We can similarly reason that Ia
P/O′ =

Ra
P/O′ , which leads to the Newtonian acceleration

addition formula Ia
P/O

= Ia
O′/O

+ Ra
P/O′ . We now note that the velocity and the acceleration

addition formulae are vector equations. Since vectors are geometric objects, vector equations are

valid beyond the planar context we have utilized to derive them. For example, the content of the
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velocity addition formula Iv
P/O

= Iv
O′/O

+ Rv
P/O′ is that if the velocity (Rv

P/O′ ) of a particle is

observed in a reference frame R, and if R is translating in space relative to an inertial frame I at

a certain velocity (Iv
O′/O

), then the velocity (Iv
P/O

) of the particle as observed in I is the vector

sum of Rv
P/O′ and Iv

O′/O
. As such, this vector sum holds even when O, O′, and P are not on the

same plane. Furthermore, the relative orientation between the two frames can be determined by

finding the correspondence among the respective unit vectors; we will demonstrate how to do

this later in the essay in the context of observing the fall of a ball from a lab frame on Earth. We

summarize these important results below.

Newtonian Velocity & Acceleration Addition for Translations

If I is an inertial reference frame with origin O and R is a reference frame with origin O′

that is translating relative to I , and P is a point particle, then

Iv
P/O

= Iv
O′/O

+ Rv
P/O′ , (6)

Ia
P/O

= Ia
O′/O

+ Ra
P/O′ . (7)

We can now multiply (7) by the mass of the particle to obtain

mP
Ia

P/O
= mP

Ia
O′/O

+ mP
Ra

P/O′ ,

where we note from (4) that mP
Ia

P/O
= FP . Thus,

Newton’s Second Law in a Translating (Non-Rotating) Reference Frame

If I is an inertial reference frame with origin O and R is a reference frame with origin O′

that is translating relative to I , and P is a point particle, then Newton’s second law in the

translating frame R takes the form

mP
Ra

P/O′ = FP − mP
Ia

O′/O
. (8)

Note that if the translating reference frame R is accelerating relative to the inertial frame I , that

is, if Ia
O′/O

6= 0, then (8) differs from the form in (4). In contrast, if it is translating at a constant

velocity relative to the inertial frame, in which case Ia
O′/O

= 0, then the forms (8) and (4) agree

and Newton’s second law in this case reads m
P
Ra

P/O′ = F
P
. Since this form only applies in an

inertial frame of reference, this means that R is an inertial reference frame when it is translating

at constant velocity relative to I . In other words, reference frames that move at constant velocity

with respect to each other are also inertial where Newton’s second law in the form F = ma holds.

Thus the form of Newton’s second law is invariant in inertial frames, and therefore, the physics in

different inertial frames is indistinguishable (Galilean principle of relativity).



4 A BALL THROWN VERTICALLY UPWARD FROM A MOVING TRAIN 13

Comparing (4) and (8), it is also important to note that FP is the total force on the point particle

as observed in both the inertial (I) and the arbitrary translating frame (R). There really is no

other force on P. However, looking at the right-hand side of (8), we see the appearance of the

term mP
Ia

O′/O
, which traditionally is called a fictitious force in the literature. As the reader can

trace back, the origin of this term is kinematic, and is rooted in the acceleration addition formula

(7), at which point no forces, and hence, dynamics, have entered the picture. Therefore, the term

mP
Ia

O′/O
, or the so-called fictitious force, is purely a kinematic (relative motion) effect devoid

of dynamical origins. The reader may realize the additional advantage of the approach (and the

notation adopted), in that one does not have to know in advance what the fictitious forces are

in a given situation but let them emerge naturally through the associated kinematics. Generally,

in mechanics, identifying the true forces (FP) acting on a particle is difficult enough.8 Therefore,

the analysis of motion is further burdened if one is required to know, a priori, what fictitious

forces need to be accounted for (in a dynamical sense) instead of making them emerge as part of

kinematics.

We next apply these learnings to the situation where a ball is thrown vertically upward in a rec-

tilinearly moving train. We use this particular scenario to understand, in a concrete way, why

the ancients believed the Earth is immovable, and why balls and rocks thrown up do land in our

hands.

4 A Ball Thrown Vertically Upward from a Moving Train

Our goal here is to utilize the expressions developed so far to analyze the motion of a ball thrown

vertically upward from a moving train. We consider the ball to be a point particle and assume

that there is no ceiling to the train, and no air resistance or wind to disturb the motion of the

ball. We also assume that there is no friction on the train from the rails. Since we expect the

ball to reach a height that is negligible compared to the radius of the Earth, we take the gravi-

tational force acting on the ball to be constant; hence, the gravitational acceleration, g, is constant.

We consider both the train (R ≡ {O′, ex′ , ey′ , ez′}) and the station (I ≡ {O, ex, ey, ez}) to be on

the same plane where the former moves rectilinearly relative to the latter in the horizontal ex di-

rection (that is, in the positive x-direction), where ex = ex′ . Also, we take ey = ey′ direction to be

the vertically upward direction (that is, the positive y-, or equivalently, the positive y′-direction).

The station is at rest with respect to the absolute space and, therefore, is inertial. The train is then

translating rectilinearly with respect to the inertial station. We assume that time between these

two frames is synchronized, and that at time t = 0 the origin O′ of the passing train coincides

with the origin O of the station, at which instant a ball is thrown vertically upwards by an ex-

perimenter on the train. As described earlier, once synchronized, all frames of reference read the

same time in Newtonian mechanics irrespective of their motion. This is important in our analysis

8Historically, this is one of the reasons that led to the development of the Lagrangian, Hamiltonian, and Hertzian

formulations of mechanics, where one does not have to explicitly identify the forces acting on particles.
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since, once synchronized, the station time is always the same as the train time. This essentially

means that the speed of the train is negligible compared to the speed of light, which indeed is

the case for earthly trains, including the Earth itself. We also assume the Earth to be an inertial

frame, since this is the case for many practical cases as described earlier. We analyze two cases:

(a) where the train moves at constant velocity with respect to the station, and (b) where the train

moves at constant acceleration with respect to the station.

(a) Motion of a Ball Thrown Vertically Upward from a Train Moving at Constant Velocity

Since the train is moving at constant velocity relative to the station, its acceleration with respect

to the station vanishes. Therefore, Ia
O′/O

= 0. Thus, (8) reads

mP
Ra

P/O′ = FP . (9)

Given the form of this equation, which is Newton’s second law, the train moving at constant

velocity relative to the stationary station, itself, is an inertial reference frame. For completeness,

here, mP 6= 0 is the mass of the ball, FP is the total force acting on the ball, and Ra
P/O′ is the

acceleration of the ball as observed on the train.

Let the experimenter on the train throw the ball vertically upward with a speed v0 at time t = 0

when the origins of the two frames coincide; therefore, the initial velocity of the ball relative to the

train is Rv
P/O′ (0) = v0ey′ . Then, the position vector of the ball, according to this experimenter, is

r
P/O′ = x′ex′ + y′ey′ .

(z′ = 0 since the motion takes place in the X′ − Y′ plane of the train, which is the same as the

X −Y plane of the station.) Therefore, the ball’s velocity and acceleration as observed in the train

are given by

Rv
P/O′ = ẋ′ex′ + ẏ′ey′ ,

Ra
P/O′ = ẍ′ex′ + ÿ′ey′ .

Now, the only force acting on the ball is the gravitational force from the Earth which acts ver-

tically downward with constant magnitude mP g. Therefore, FP = −mP gey′ . Substituting these

expressions for force and acceleration in (9) and dividing the resulting equation by mP , we obtain

ẍ′ex′ + ÿ′ey′ = −gey′ .

We can now equate the coefficients of the corresponding unit vectors to obtain the scalar equa-

tions of motion (EOM). Thus, the equations of motion of the ball as expressed in the train frame,
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which is inertial, are

ẍ′ = 0, ÿ′ = −g. EOM of the ball as observed on the inertial train (10)

Note that in these equations of motion there is no information regarding the constant speed of

the train relative to the station. Therefore, the description of the motion of the ball with respect to

the uniformly moving train is independent of how fast the train is moving relative to the station.

Our goal now is to solve these equations of motion. The equation ẍ′ = 0 implies that the ball does

not accelerate in the horizontal ex′ direction. In other words, there is no acceleration of the ball

along the length of the train as measured by the observers on the train. This immediately implies

that the ball’s horizontal speed, ẋ′, as observed in the train, must remain a constant throughout

its motion, including that at time t = 0. But, since the ball was thrown vertically upward in the

train, there is no horizontal speed given to it. Thus, ẋ′(0) = 0, and therefore, ẋ′(t) = 0, ∀t. This

in turn implies that the coordinate x′ of the ball, as observed in the train, must be a constant

throughout its motion, including that at time t = 0. But, since the ball was initially thrown

from the origin O′ of the train reference frame where x′ = y′ = 0, this implies that x′(0) = 0,

and therefore, x′(t) = 0, ∀t. Hence, there is no lateral movement to the ball when it is thrown

vertically upward from a train moving at constant velocity relative to the station; the ball will

therefore land at the same spot from which it was launched!

Regarding the above conclusion, the reader may exclaim “of course, we know that!”; yet, this is

a profound result. We should now be able to appreciate, in a rigorous way, why the ancients

believed that the Earth is immovable, and why it required great strides in our understanding

of motion to realize that the Earth can indeed move without leaving the things thrown upward

behind. As we have described earlier, the Earth’s motion about its axis and around the Sun is

such that the acceleration experienced by earthlings due to its motion is negligible. Therefore,

the Earth is practically an inertial frame of reference for short-duration motions experienced on

a daily basis. As a result, we are able to catch a rock thrown vertically upward without requiring

any lateral movement since the rock effectively remains directly above us; its motion effectively

only differs in height although the Earth we are standing on is moving at fantastic speeds with

respect to absolute space.

Having solved the mystery of the absence of any horizontal movement of the ball, let us consider

the remaining equation of motion which describes its vertical movement. Since ÿ′ = −g, this

implies that
dẏ′

dt = −g. As described above, at t = 0, ẏ′(0) = v0. Therefore,

∫

ẏ′

v0

dẏ′ = −g

∫

t

0

dt =⇒ ẏ′ = v0 − gt.
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Since ẏ′ =
dy′

dt ,

∫

y′

0

dy′ =

∫

t

0

(v0 − gt) dt =⇒ y′(t) = v0t −
1

2
gt2.

Let us summarize these findings:

(a.1) Motion of the ball according to the train moving with constant velocity

At t = 0 a ball (P) is thrown vertically upward from the origin [O′ = (0, 0)
R

] in the

train (R), which moves with constant velocity relative to the station (I). The ball’s initial

velocity in the train frame is Rv
P/O′ (0) = v0ey′ . The origin [O = (0, 0)

I
] of the station

coincides with the origin of the train at t = 0. The motion of the ball with respect to the

inertial train is then described by:

EOM: ẍ′ = 0, ÿ′ = −g, where x′(0) = 0 and ẋ′(0) = 0; y′(0) = 0 and ẏ′(0) = v0.

Therefore,

x′(t) = 0 ∀t, y′(t) = v0t − 1
2 gt2; v0 6= 0.

Hence, the trajectory of the ball with respect to the train is a vertical straight line. The

description of the motion of the ball with respect to the uniformly moving train is inde-

pendent of how fast the train is moving relative to the station.

When y′(t) = 0, v0t − 1
2 gt2 = 0 implies that t(v0 −

1
2 gt) = 0. Therefore, t = 0 and t = 2v0/g are

solutions. The former corresponds to the time of launch of the ball, and the latter corresponds to

the time of its arrival back at the launch point (O′). Therefore, the ball is in flight for a duration of

T = 2v0/g and it will reach the zenith of its trajectory at τ = T/2 = v0/g; hence, the maximum

height the ball reaches in the train frame is y′(τ) = y′max = v0τ − 1
2 gτ2 =

v2
0

2g .

We now turn to describing the motion of the ball with respect to the station. In analyzing the

motion of the ball in the train we have not cared to specify the details of motion of the train

other than to state the fact that it is moving at constant velocity relative to the station. In order

to describe the motion of the ball with respect to the station, we need to specify to speed and

the direction of the train. Therefore, let us take the train to be moving at constant speed u in the

positive ex direction. Thus the velocity of the train relative to the station is Iv
O′/O

= uex, which

is constant. At any instance, the position of the ball according to the station frame is (x, y)
I
.

Therefore its position vector is
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r
P/O

= xex + yey.

(z = 0 since the motion takes place in the X − Y plane of the station, which is the same as the

X′ − Y′ plane of the train.) Therefore, the ball’s velocity and acceleration as observed in the

station are given by

Iv
P/O

= ẋex + ẏey, Ia
P/O

= ẍex + ÿey.

Now, from (6), Iv
P/O

= Rv
P/O′ +

Iv
O′/O

. Therefore, at the moment the ball is vertically launched,

Iv
P/O

(0) = Rv
P/O′ (0) +

Iv
O′/O

(0).

But Rv
P/O′ (0) = v0ey′ = v0ey and Iv

O′/O
(0) = uex, where we have used the fact that ey′ = ey.

Thus,

Iv
P/O

(0) = v0ey + uex = ẋ(0)ex + ẏ(0)ey =⇒ ẋ(0) = u, ẏ(0) = v0.

Since the station frame is inertial, from Newton’s second law,

mP
Ia

P/O
= FP . (11)

Now, the only force acting on the ball is the gravitational force from the Earth which acts ver-

tically downward with constant magnitude mP g. Therefore, FP = −mP gey. Substituting these

expressions for force and acceleration in (11) and dividing the resulting equation by mP , we obtain

ẍex + ÿey = −gey.

We can now equate the coefficients of the corresponding unit vectors to obtain the scalar equa-

tions of motion (EOM). Thus, the equations of motion of the ball as expressed in the station

frame, which is inertial, are

ẍ = 0, ÿ = −g. EOM of the ball as observed on the (inertial) station (12)

We therefore note that the equations of motion of the ball as expressed according to the station

are identical to the equations of motion expressed according to the train [see (10)]. This must be

so since the station is at rest in absolute space and the train is moving at constant velocity relative

to the station; hence, they are both inertial frames, and as such, the laws of physics must have the
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same form in both in describing the same phenomena (Galilean Principle of Relativity). However,

this does not mean that the observations made in the two inertial frames are identical since the

initial conditions as measured by the respective observers are different: on the train, x′(0) = 0,

ẋ′(0) = 0, y′(0) = 0, ẏ′(0) = v0; but on the station, x(0) = 0, ẋ(0) = u, y(0) = 0, ẏ(0) = v0.

Now, since ẍ = 0, it follows that the horizontal speed of the ball with respect to the station is

constant, including at the instance t = 0: that is ẋ(t) = ẋ(0). But, as established above, ẋ(0) = u.

Therefore, ẋ = u, ∀t. Now, since the ball is launched when the origin of the train coincides with

the origin of the station, x = y = 0 at t = 0. Hence,

∫

x

0

dx = u

∫

t

0

dt =⇒ x = ut.

The remaining equation of motion describes vertical movement of the ball with respect to the

station. Since ÿ = −g, this implies that
dẏ
dt = −g. As shown above, at t = 0, ẏ(0) = v0. Therefore,

∫

ẏ

v0

dẏ = −g

∫

t

0

dt =⇒ ẏ = v0 − gt.

Since ẏ = dy
dt ,

∫

y

0

dy =

∫

t

0

(v0 − gt) dt =⇒ y(t) = v0t −
1

2
gt2.

Thus, both the station and the train frame describe the vertical movement of the ball identically;

that is, y(t) = y′(t). Now, since x = ut, t = x/u. Substituting this in the last expression for y to

eliminate time yields

y =
v0

u
x −

g

2u2
x2,

which is the equation of a parabola. Let us summarize these findings:
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(a.2) Motion of the ball according to the station (train moving with constant velocity)

At t = 0 a ball (P) is thrown vertically upward from the origin [O′ = (0, 0)
R

] in the train

(R), which moves with constant velocity Iv
O′/O

= uex relative to the station (I). The

ball’s initial velocity in the train frame is Rv
P/O′ (0) = v0ey′ . The origin [O = (0, 0)

I
] of the

station coincides with the origin of the train at t = 0. The motion of the ball with respect

to the inertial station is then described by:

EOM: ẍ = 0, ÿ = −g, where x(0) = 0 and ẋ(0) = u; y(0) = 0 and ẏ(0) = v0.

Therefore,

x(t) = ut, y(t) = v0t − 1
2 gt2 = y′(t) =⇒ y = v0

u x −
g

2u2 x2; u, v0 6= 0

Hence, the trajectory of the ball with respect to the station is a parabola.

Just as observed on the train, since y(t) = v0t − 1
2 gt2, the ball reaches the launch point O′ at

time T = 2v0/g, which at that instance is a distance x = uT = 2uv0/g away from the origin

O of the station. As observed in the station, when the ball reaches its highest point at time

τ = T/2 = v0/g, its coordinates read (x, y)
I
|t=τ =

(

uv0
g ,

v2
0

2g

)

. In contrast, in the train frame,

when the ball reaches the highest point, its coordinates read (x′, y′)
R
|t=τ =

(

0,
v2

0
2g

)

. Figure 3

shows the trajectory of the ball in the respective frames.

If an identical experiment is conducted on the train station – that is, a ball thrown vertically up-

ward at speed v0 – then all the observations made by the observer on the station will agree with

those made on the train, including the key observation that the ball lands in the hands of the

thrower without needing any lateral movement. Therefore, if the observers on the station and on

the train have no means to look outside, they will not be able to distinguish, via any experiment

conducted within their enclosures, whether they are at rest or are in uniform motion. Identical

experiments conducted in inertial frames yield identical results as Galileo’s principle of relativity

states. We now turn to the scenario where the train moves at constant acceleration relative to the

station.
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Figure 3: Trajectory of a ball as observed on a uniformly moving train (left, blue) and on the station (right,

red) during the following experiment: The ball (P) was thrown vertically upward at t = 0 from the origin

[O′ = (0, 0)R ] in the train (R), which moves at constant velocity Iv
O′/O

= uex relative to the station (I),

where u = 1 m/s. The ball’s initial velocity in the train frame is Rv
P/O′ (0) = v0ey′ , where v0 = 2 m/s.

The origin [O = (0, 0)I ] of the station coincides with the origin O′ of the train at t = 0; g = 9.81 m/s2. All

distances shown in the charts are in meters.
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(b) Motion of a Ball Thrown Vertically Upward from a Train Moving with Constant Acceleration

Let the constant acceleration of the train relative to the station be Ia
O′/O

= aex, where a 6= 0 is

a constant. Since ex = ex′ , it is also true that Ia
O′/O

= aex′ . Since a 6= 0, the train is no longer

an inertial frame. Therefore, if applied in the non-inertial train to describe the motion of the ball,

Newton’s second law reads

mP
Ra

P/O′ = FP − mP
Ia

O′/O
. (13)

Using the corresponding expressions stated under the scenario (a) above, it then follows accord-

ing to (13), that

mP
Ra

P/O′ = mP

(

ẍ′ex′ + ÿ′ey′

)

= −mP gey′ − mP aex′ . (14)

Hence,

ẍ′ = −a, ÿ′ = −g. EOM of the ball as observed on the non-inertial train (15)

As before, the solutions of these differential equations are straightforward. They yield: x′(t) =
ẋ′(0)t − 1

2 at2 and y′(t) = ẏ′(0)t − 1
2 gt2. Since the ball was thrown vertically upward with a

velocity Rv
P/O′ (0) = v0ey′ at t = 0, ẋ′(0) = 0 and ẏ′(0) = v0. Therefore, x′(t) = − 1

2 at2 and

y′(t) = v0t − 1
2 gt2. Let us rearrange this last expression to read v0t = y′ + 1

2 gt2. If we now square

this expression we will obtain a bi-quadratic equation in t2, which is: v2
0t2 = y′2 + gy′t2 + 1

4 g2t4.

Since x′ = − 1
2 at2, it follows that t2 = −2x′/a. Substituting this in the bi-quadratic and multiply-

ing the resultant by a2 followed by rearrangement, we obtain: g2x′2 + a2y′2 − 2agx′y′+ 2av2
0x′ = 0,

which is a more complex-looking conic section. We summarize these results below:
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(b.1) Motion of the ball according to the train moving with constant acceleration

At t = 0 a ball (P) is thrown vertically upward from the origin [O′ = (0, 0)
R

] in the train

(R), which moves with constant acceleration Ia
O′/O

= aex relative to the station (I). The

ball’s initial velocity in the train frame is Rv
P/O′ (0) = v0ey′ . The origin [O = (0, 0)

I
] of the

station coincides with the origin of the train at t = 0. The motion of the ball with respect

to the non-inertial train is then described by:

EOM: ẍ′ = −a, ÿ′ = −g, where x′(0) = 0 and ẋ′(0) = 0; y′(0) = 0 and ẏ′(0) = v0.

Therefore,

x′(t) = − 1
2 at2, y′(t) = v0t− 1

2 gt2 =⇒ g2x′2 + a2y′2 − 2agx′y′+ 2av2
0x′ = 0; a, v0 6= 0.

Hence, the trajectory of the ball with respect to the train is a more general conic section.

Note that since we consider the train to be accelerating in the positive x-direction, a > 0. There-

fore, according to x′(t) = − 1
2 at2, negative x′ increases quadratically with time. This means

the ball is (increasingly) left behind according to the observers on the train; in other words, as

observed in the train, the ball moves increasingly in the negative x-direction as the train accel-

erates in the positive x-direction. This effect can be seen on the left chart in Figure 4. From

y′(t) = v0t − 1
2 gt2 it is again clear that the ball is in flight for a duration T = 2v0/g. However,

when it reaches y′ = 0 again, it will not land at the origin O′ = (0, 0); instead, as observed in the

train, it will land at x′ = −2av2
0/g2. As observed in the train, when the ball reaches its highest

point at time τ = T/2 = v0/g, its coordinates read (x′, y′)
R
|t=τ =

(

− 1
2

av2
0

g2 ,
v2

0
2g

)

.

If we revisit (14), since Ra
P/O′ = −aex′ − gey′ , we see that the acceleration of the ball as observed

in the train is a combination of the (constant) acceleration of the train relative to the station and

the (constant) gravitational acceleration of the ball. The former acts in the −ex′ direction (say,

west) while the latter acts in the −ey′ direction (say, south). From vector addition, this implies

that the resultant acceleration (Ra
P/O′ = g′) of the ball with respect to the train has constant

magnitude g′ =
√

a2 + g2, which acts at a constant angle θ in the south-west direction such that

tan θ = a/g. Therefore, when the ball is thrown vertically upward in the accelerating train, we

can consider it to be moving under an effective constant gravitational field g′ that acts at an an-

gle θ to the downward vertical in the direction opposite to the moving train. The more general

conic-section trajectory results from this effective gravitational field.

To complete the story, let us look at the motion of the ball with respect to the station when it

is thrown vertically upward from the accelerating train. Since the station remains inertial, the

motion of the ball is described according to the Newton’s second law: m
P
Ia

P/O
= F

P
. Therefore,

the resulting conclusions are the same as before when the ball was thrown vertically upward from
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the train moving at constant velocity relative to the station. In the present case, let us assume that

when the origins of the frames coincide at t = 0, that is, at the instance that the ball is launched,

the velocity of the train relative to the station is Iv
O′/O

(0) = u0ex. We can then state the following

summary:

(b.2) Motion of the ball according to the station (train moving with constant acceleration

At t = 0 a ball (P) is thrown vertically upward from the origin [O′ = (0, 0)
R

] in the train

(R), which moves with constant acceleration Ia
O′/O

= aex relative to the station (I). The

ball’s initial velocity in the train frame is Rv
P/O′ (0) = v0ey′ . The origin [O = (0, 0)

I
] of

the station coincides with the origin of the train at t = 0 at which instance the velocity of

the train relative to the station is Iv
O′/O

(0) = u0ex. The motion of the ball with respect to

the inertial station is then described by:

EOM: ẍ = 0, ÿ = −g, where x(0) = 0 and ẋ(0) = u0; y(0) = 0 and ẏ(0) = v0.

Therefore,

x(t) = u0t, y(t) = v0t − 1
2 gt2 = y′(t) =⇒ y = v0

u0
x −

g

2u2
0
x2; u0, v0 6= 0

Hence, the trajectory of the ball with respect to the station is a parabola.

As can be seen, since y(t) = y′(t), the vertical description of the motion between the two frames

is the same. However, in contrast to the uniformly moving train where the equations of motion

were identical in the two inertial frames, the equations of motion differ between the two frames

when the train is accelerating. In this case, the accelerating train is a non-inertial frame while the

station remains an inertial frame. The ball will be in flight for a duration of T = 2v0/g and will

land at x = u0T = 2u0v0/g as observed in the station. Figure 4 shows the trajectory of the ball in

the respective frames.

If the ball is hanging via a taut string attached to the ceiling of the accelerating train, then due

to the effective gravitational field on the ball, the string will make an angle θ to the downward

vertical in the direction opposite to the moving train such that tan θ = a/g. This provides our

observer on the train another means of determining the non-inertial status of the accelerating

train. In contrast, if the train is moving uniformly relative to the station, then a = 0, and hence,

θ = 0. Therefore, the string will hang vertically down from the ceiling of a uniformly moving

train; the same observation can be made by the observers on the station via an identical exper-

iment conducted in their frame. Thus, inertial and non-inertial frames can be distinguished via

identical mechanical experiments.
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Figure 4: Trajectory of a ball as observed on an accelerating train (left, blue) and on the station (right,

red) during the following experiment: The ball (P) was thrown vertically upward at t = 0 from the origin

[O′ = (0, 0)R ] in the train (R), which moves with constant acceleration Ia
O′/O

= aex relative to the station

(I), where a = 2 m/s2. The ball’s initial velocity in the train frame is Rv
P/O′ (0) = v0ey′ , where v0 = 2 m/s.

The origin [O = (0, 0)I ] of the station coincides with the origin O′ of the train at t = 0 at which instance
Iv

O′/O
= u0ex , where u0 = 1 m/s; g = 9.81 m/s2. All distances shown in the charts are in meters.
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5 Newton’s Second Law: Translations & Rotations

We now consider a reference frame R that is both translating and rotating relative to an inertial

frame I . We therefore wish to describe the motion of a point particle P with respect this translat-

ing and rotating frame. Since this scenario is more general, the equations (6) and (8) that apply

only for translations must emerge as special cases of equations that apply under both transla-

tion and rotation. Therefore, when frame R is rotating in addition to translation, we expect the

formulae to read:

Iv
P/O

= Iv
O′/O

+ Rv
P/O′ + [rotation-dependent terms],

mP
Ra

P/O′ = FP − mP
Ia

O′/O
+ [rotation-dependent terms].

Our goal, therefore, is to identify the structure of these extra rotation-dependent terms. Toward

this end, we again confine ourselves to the planar case. First let us assume that frame R is

rotating relative to the inertial frame I about an axis perpendicular to the plane that goes through

its origin O′. Let us denote the angular velocity of frame R relative to the inertial frame I as
I
ω
R. Since the axis about which R rotates is parallel to ez′ (= ez), the angular velocity is then

I
ω
R = ωez′ = ωez , (16)

where ω is the magnitude of I
ω
R. As a second step toward determining the structure of the

rotation-dependent terms, we define a relation which is fundamental in analyzing motion. In

order to motivate this definition, note from (5) that, under pure translation,

Id

dt
r

P/O′ =
Rd

dt
r

P/O′ . (17)

When a rotation is added to frame R relative to I , we expect a term that involves the angular

velocity I
ω
R to appear on the right-hand side of the above expression. Since both sides of (17) are

vectors (measured in length per unit time), the only way we can add I
ω
R (which is measured in

per unit time) to the right of (17) is to form a vector cross product of I
ω
R with a vector having the

units of length. (Note that a vector dot product with I
ω
R would not do since this would result

in a scalar while the other terms are vectors; a scalar cannot be added to a vector.) Therefore,

it seems reasonable that we form the vector cross product I
ω
R × r

P/O′ to be added to (17). We

therefore have,

Id

dt
r

P/O′ =
Rd

dt
r

P/O′ +
I
ω
R × r

P/O′ . (18)

When R is only translating, I
ω
R = 0, and we recover (17) back again. If we extract only the

operator part from (18), we then have,
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Id

dt
r

P/O′ =

(Rd

dt
+ I

ω
R×

)

r
P/O′ =⇒

Id

dt
≡

(Rd

dt
+ I

ω
R×

)

.

The operator form indicates that there is nothing special about r
P/O′ and that we can apply it to

any vector. Moreover, I and R can also be considered as arbitrary frames. This, then, results

in a very general and fundamental expression known as the Transport Equation, which we state

below.

Transport Equation: definition

If A and B are reference frames, and frame B rotates relative to frame A with angular

velocity A
ω
B , then the following is satisfied for any vector c observed in the respective

frames:

Ad

dt
c =

Bd

dt
c + A

ω
B × c. (19)

We are now in a position to understand the structure of the rotation-dependent terms. Consider

Figure 5.

Starting with the position vector triangle OPO′, then,

r
P/O

= r
O′/O

+ r
P/O′ ,

Id

dt
r

P/O
=

Id

dt
r

O′/O
+

[ Id

dt
r

P/O′

]

,

Id

dt
r

P/O
=

Id

dt
r

O′/O
+

[Rd

dt
r

P/O′ +
I
ω
R × r

P/O′

]

, by applying the transport eq. (19)

Now,
Id
dt r

P/O
= Iv

P/O
,

Id
dt r

O′/O
= Iv

O′/O
, and

Rd
dt r

P/O′ =
Rv

P/O′ . Therefore,

Iv
P/O

= Iv
O′/O

+
[

Rv
P/O′ +

I
ω
R × r

P/O′

]

.

We now start by taking the time derivative of the last expression with respect to the inertial frame

I .

Id

dt
Iv

P/O
=

Id

dt
Iv

O′/O
+

Id

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

.
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b P

Y

I

X

ey

ex
O

r
P/O

r
O′/O

R

Y′

X′

ey′

ex′

O′

r
P/O′

I
ω
R

Iv
O′/O

Figure 5: The reference frame R ≡ {O′, ex′ , ey′ , ez′} is both translating and rotating relative to the inertial

reference frame I ≡ {O, ex, ey, ez}. The green arrow shows the instantaneous translational velocity (Iv
O′/O

)

of R relative to I . The blue arrow depicts the instantaneous rotation of R about an axis that passes through

its origin perpendicular to the plane; the instantaneous angular velocity of R relative to I is I
ω
R. |Drawing by

AD.
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Now,
Id
dt

Iv
P/O

= Ia
P/O

and
I d
dt

Iv
O′/O

= Ia
O′/O

. Therefore,

Ia
P/O

= Ia
O′/O

+
Id

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

.

From the transport equation,

Id

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

=
Rd

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

+ I
ω
R ×

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

.

The second term on the right can be easily expanded to read:

I
ω
R ×

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

= I
ω
R × Rv

P/O′ +
I
ω
R ×

(

I
ω
R × r

P/O′

)

.

The first term on the right reads:

Rd

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

=
Rd

dt
Rv

P/O′ +

(Rd

dt
I
ω
R

)

× r
P/O′ +

I
ω
R ×

(Rd

dt
r

P/O′

)

.

Since
Rd
dt

Rv
P/O′ =

Ra
P/O′ and

Rd
dt r

P/O′ =
Rv

P/O′ ,

Rd

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

= Ra
P/O′ +

(Rd

dt
I
ω
R
)

× r
P/O′ +

I
ω
R × Rv

P/O′ .

We are now left to find out what the middle term on the right is. It is the time derivative of the

angular velocity taken in the rotating frame itself. Considering (16), which is I
ω
R = ωez′ = ωez,

it follows that
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Rd

dt
I
ω
R =

Rd

dt
(ωez′) ,

=

(Rd

dt
ω

)

ez′ , ∵ ez′ is fixed in R

=

( Id

dt
ω

)

ez′ , ∵ ω is a scalar

=

( Id

dt
ω

)

ez, ∵ ez′ = ez

=
Id

dt
(ωez) , ∵ ez is fixed in I

∴

Rd

dt
I
ω
R =

Id

dt
I
ω
R.

Thus the rate of change of angular velocity with respect to the two frames are the same. Specif-

ically, the rate of change of angular velocity with respect to the inertial frame, that is,
I d
dt

I
ω
R, is

the angular acceleration (α) of R relative to the inertial frame I . Hence,

Rd

dt
I
ω
R =

Id

dt
I
ω
R = I

α
R. (20)

Therefore,

Rd

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

= Ra
P/O′ +

I
α
R × r

P/O′ +
I
ω
R × Rv

P/O′ .

Collecting the above results, we then have,

Id

dt

[

Rv
P/O′ +

I
ω
R × r

P/O′

]

= Ra
P/O′ +

I
α
R × r

P/O′ +
I
ω
R × Rv

P/O′ +
I
ω
R × Rv

P/O′ +
I
ω
R ×

(

I
ω
R × r

P/O′

)

,

= Ra
P/O′ +

I
α
R × r

P/O′ + 2IωR × Rv
P/O′ +

I
ω
R ×

(

I
ω
R × r

P/O′

)

.

Therefore,

Ia
P/O

= Ia
O′/O

+ Ra
P/O′ +

I
α
R × r

P/O′ + 2IωR × Rv
P/O′ +

I
ω
R ×

(

I
ω
R × r

P/O′

)

.

As before, we note that these are vector equations that are then valid beyond the planar case. We

summarize these general velocity and acceleration addition formulae below.
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Newtonian Velocity & Acceleration Addition for Translations and Rotations

If I is an inertial reference frame with origin O and R is a reference frame with origin O′

that is translating and rotating relative to I , and P is a point particle, then

Iv
P/O

= Iv
O′/O

+ Rv
P/O′ +

I
ω
R × r

P/O′ , (21)

Ia
P/O

= Ia
O′/O

+ Ra
P/O′ +

I
α
R × r

P/O′ + 2IωR × Rv
P/O′ +

I
ω
R ×

(

I
ω
R × r

P/O′

)

, (22)

where

I
α
R × r

P/O′ : Euler acceleration

2IωR × Rv
P/O′ : Coriolis acceleration

I
ω
R ×

(

I
ω
R × r

P/O′

)

: centripetal acceleration

The structure of the rotation-dependent terms that we set out to find is now clear. When rotations

are present, the velocity addition formula, (6), is augmented by a single term I
ω
R × r

P/O′ . In

contrast, when rotations are present, the acceleration addition formula, (7), is augmented by

three terms: the Euler, Coriolis, and centripetal accelerations. Multiplying (22) by the mass of the

particle (mP ) followed by rearrangement (along with the fact that FP = mP
Ia

P/O
), we arrive at the

form of Newton’s second law according to frame R:

Newton’s Second Law in a Translating and Rotating Reference Frame

If I is an inertial reference frame with origin O and R is a reference frame with origin

O′ that is translating and rotating relative to I , and P is a point particle, then Newton’s

second law in the translating and rotating frame R reads

m
P
Ra

P/O′ = F
P
−m

P
Ia

O′/O
−m

P
I
α
R× r

P/O′ − 2m
P
I
ω
R×Rv

P/O′ −m
P
I
ω
R×

(

I
ω
R × r

P/O′

)

.

(23)

In addition to the term Ia
O′/O

, we can trace back the emergence of the Euler
(

I
α
R × r

P/O′

)

, Cori-

olis
(

2IωR × Rv
P/O′

)

, and centripetal
[

I
ω
R ×

(

I
ω
R × r

P/O′

)]

acceleration terms in our deriva-

tion to their kinematic origins. In other words, they arise in our attempt to describe motion

with respect to a frame of reference that is non-inertial; the term FP alone contains the informa-

tion about the true forces acting on the particle. In literature, therefore, these acceleration terms

(when multiplied by the mass of the particle) are called fictitious forces. The notation we have

adopted should help the reader to keep track of the details of these so-called fictitious forces at all

times freeing their working memory for other important tasks in analyzing problems of motion.
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6 Motion of a Ball as Observed on Earth

In our analysis of a ball thrown from a rectilinearly moving train, we assumed the Earth to be

an inertial frame. We relax this assumption in the present section, our goal being to understand

what effect the Earth’s rotation about its axis has on the motion of a ball (which we take to be a

particle, as before) as observed by someone standing on Earth’s surface. We still disregard Earth’s

motion around the Sun since its orbital acceleration is five times smaller than its rotational accel-

eration about its axis. Our interest is in finding where a ball would land under two scenarios: (c)

when a ball is dropped from a tower, and (d) when a ball is thrown vertically upward.

(c) Motion of a Ball Dropped from a Tower

Let us call the reference frame R of our earthling who carries out the experiments, the lab frame,

whose origin (O′) we take to be located at latitude λ. It is convenient to consider the inertial

frame, I , relative to which the lab frame rotates, as located at the center of the Earth. Therefore,

the origin (O) of I coincides with the center of the Earth and its associated orthogonal unit vector

triad (ex, ey, ez) is fixed in absolute space such that ez points along the Earth’s axis of rotation.

Thus, the constant angular velocity of the Earth is I
ω
R = ωez. We can situate the orthogonal

unit vector triad of the lab frame such that ex′ points east, ey′ points north, and ez′ points upward

along the radial joining OO′. All unit vector triads form right-handed coordinate systems. These

are depicted in Figure 6.

Now, the motion of a particle with respect to the lab frame is described according to (23). Since the

Earth’s angular velocity I
ω
R is constant, it follows that I

α
R = 0. Moreover, since ω ≈ 7.3× 10−5

s−1, the term I
ω
R ×

(

I
ω
R × r

P/O′

)

is quadratic in angular speed, which is ∼ 10−9 s−2. If we

couple this with relatively short heights (r
P/O′ ) observed above the Earth, then this whole term

can be ignored in the present analysis. Hence, for particles observed in the lab frame on Earth,

the Euler and the centripetal accelerations do not matter. The governing equation of motion for

particles observed in the lab frame then reduces to

mP
Ra

P/O′ = FP − mP
Ia

O′/O
− 2mP

I
ω
R × Rv

P/O′ . (24)

We now embark to write the remaining accelerations in terms of the coordinates employed in the

lab frame (since these are the coordinates used by our experimenter). Toward this end we must

find how the unit vector triads in the respective frames are related to each other, which is key to

analyzing relative motion. (In the case where the ball was thrown from the rectilinearly moving

train, we did this analysis without much difficulty since the corresponding unit vectors in both

the station and the train frames were parallel to each other.)

To find how the unit vector triads are related it is best to have them in one location. Therefore,

without disturbing the orientation, let us move (in absolute space) the lab frame triad to the cen-
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λ

φ

ω

Z′

Y

Y′

X

X′

Z

R

I

bO

b
O′

ey

ez

ex

ey′

ez′

ex′

Figure 6: The inertial frame I ≡ {O, ex, ey, ez} is located at the center of the Earth and is fixed in absolute

space. The lab frame R ≡ {O′, ex′ , ey′ , ez′} on the surface is located at latitude λ, and at the instant shown,

at azimuth φ (which lies on the X − Y or the equatorial plane). The orthogonal unit vector triad of the

lab frame is oriented such that ex′ points east, ey′ points north, and ez′ points directly upward along the

radial joining OO′. Due to Earth’s rotation about its axis, the lab frame rotates at constant angular velocity
I
ω
R = ωez = φ̇ez relative to the inertial frame. |Drawing by AD.
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ter of the Earth where the inertial frame triad is located so that the two origins O′ and O coincide

(see Figure 7).

λ

φ

λ

ey

ex

ez

ey′

ex′

ez′

π
2 − φ

Figure 7: The orthogonal unit vector triad of the lab frame (red) situated at the origin of the inertial frame.

The same orientation as in Figure 6 is preserved, which allows us to find the transition table between the

two triads. The latitude is λ, and on the X − Y (ex–ey) plane lies both the azimuthal angle φ and ex′ . Note

that the unit vectors are not drawn to scale in order to better highlight the orientation and associated angles.

|Drawing by AD.

Referring to Figure 7 it can be inferred that ey′ = − sin λ cos φex − sin λ sin φey + cos λez and

ez′ = cos λ cos φex + cos λ sin φey + sin λez. ex′ can then be found by using the fact that ex′ =
ey′ × ez′ , which gives ex′ = − sin φex + cos φey (hence, ex′ is on the X −Y plane). We summarize

these relations in what is known as a transition table which allows us to write any unit vector in

one frame as a combination of unit vectors in another frame.

ex ey ez

ex′ − sin φ cos φ 0

ey′ − sin λ cos φ − sin λ sin φ cos λ

ez′ cos λ cos φ cos λ sin φ sin λ

Table 1: Transition table for the unit vector triads in the inertial [I ≡ {O, ex , ey, ez}] and the lab

[R ≡ {O′, ex′ , ey′ , ez′}] frames. A unit vector in the lab frame can be written by adding the inertial frame

components across the columns in the corresponding row; a unit vector in the inertial frame can be written

by adding the lab frame components across the rows in the corresponding column.

We now have all the ingredients necessary to evaluate the terms in (24). Since P = (x′, y′, z′)
R

,
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r
P/O′ = x′ex′ + y′ey′ + z′ez′ . Therefore, Rv

P/O′ = ẋ′ex′ + ẏ′ey′ + ż′ez′ and Ra
P/O′ = ẍ′ex′ + ÿ′ey′ +

z̈′ez′ . So the velocity and the acceleration vectors of the point particle P with respect to the lab

frame are established.

Next, let us consider the total force F
P

on the point particle with mass m
P
. We assume that only

the gravitational force acts on the particle, and that the motion takes place near the Earth’s sur-

face so that the gravitational acceleration can be considered constant. Moreover, we assume the

particle to be released from rest at a point that lies on the radial OO′; that is, from a point directly

overhead O′ in which direction points the unit vector ez′ . Therefore, FP = −mP gez′ .

Now, I
ω
R = ωez. Since our interest is in the motion of P as observed in the lab frame,

we must express ez in terms of the lab frame unit vectors. For this, we look up the transi-

tion table, from which we read ez = 0ex′ + cos λey′ + sin λez′ = cos λey′ + sin λez′ . Therefore,
I
ω
R = ω cos λey′ + ω sin λez′ .

Since Rv
P/O′ = ẋ′ex′ + ẏ′ey′ + ż′ez′ and I

ω
R = ω cos λey′ + ω sin λez′ , it follows that,

I
ω
R × Rv

P/O′ =
(

ż′ω cos λ − ẏ′ω sin λ
)

ex′ + ẋ′ω sin λey′ − ẋ′ω cos λez′ .

We now have only Ia
O′/O

remaining to be established in terms of the lab frame unit vectors. Since

the lab is situated on Earth’s surface, and ez′ is along the radial OO′, r
O′/O

= Rez′ , where R is

the radius of the Earth.9 Taking the time derivative of r
O′/O

twice in the inertial frame must yield
Ia

O′/O
as follows:

9We assume the Earth to be spherical, although, in reality, it is a bit flattened at the poles. Newton’s prediction that

this would be the case and its eventual verification showed the power and accuracy of his mechanics. At the time, there

were competing theories that predicted the opposite effect.
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r
O′/O

= Rez′ ,

Id

dt
r

O′/O
= Iv

O′/O
= R

Id

dt
ez′ ,

Iv
O′/O

= R

(Rd

dt
ez′ +

I
ω
R × ez′

)

, from transport eq. (19)

= Rω(ez × ez′) , ∵

Rd

dt
ez′ = 0 and I

ω
R = ωez

= Rω
[(

cos λey′ + sin λez′

)

× ez′

]

, ∵ ez = cos λey′ + sin λez′

∴
Iv

O′/O
= Rω cos λex′ ,

Id

dt
v

O′/O
= Ia

O′/O
= Rω cos λ

Id

dt
ex′ ,

Ia
O′/O

= Rω cos λ

(Rd

dt
ex′ +

I
ω
R × ex′

)

, from transport eq. (19)

= Rω2 cos λ(ez × ex′) , ∵

Rd

dt
ex′ = 0 and I

ω
R = ωez

= Rω2 cos λ
[(

cos λey′ + sin λez′

)

× ex′

]

, ∵ ez = cos λey′ + sin λez′

∴
Ia

O′/O
= Rω2 sin λ cos λey′ − Rω2 cos2 λez′ .

We therefore notice that Ia
O′/O

is also quadratic in ω, which, as we have seen, is quite small.

Therefore, Rω2 ≈ 0.03 m/s2, which, when multiplied by the trigonometric functions are generally

even smaller. Therefore, to a first approximation, we can disregard the effects due to Ia
O′/O

as

well. Hence, (24) effectively takes the form mP
Ra

P/O′ = FP − 2mP
I
ω
R × Rv

P/O′ ; this implies, that

to a first approximation, the dynamics of a particle as observed in the lab frame is fundamentally

governed by the Coriolis acceleration term 2IωR ×Rv
P/O′ . (The lab frame will become an inertial

frame if the Coriolis acceleration term is also ignored.) The scalar equations of motion resulting

from these approximations can now be obtained by substituting the terms Ra
P/O′ = ẍ′ex′ + ÿ′ey′ +

z̈′ez′ , FP = −mP gez′ , and I
ω
R × Rv

P/O′ =
(

ż′ω cos λ − ẏ′ω sin λ
)

ex′ + ẋ′ω sin λey′ − ẋ′ω cos λez′

in mP
Ra

P/O′ = FP − 2mP
I
ω
R × Rv

P/O′ and equating the coefficients of the corresponding unit

vectors. We state the results as follows:
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Equations of Motion for a Free Falling Particle as Observed on Earth

Consider an inertial frame I fixed at the origin O of the Earth and a lab frame R with

its origin O′ situated on Earth’s surface. Then, to a first approximation, that is, to first

order in Earth’s angular speed, the motion of a point particle P near the Earth’s surface as

described in the lab frame is governed by

mP
Ra

P/O′ = FP − 2mP
I
ω
R × Rv

P/O′ , (25)

where 2IωR × Rv
P/O′ is the Coriolis acceleration of the particle. The scalar equations

of motion of a free falling particle, P = (x′, y′, z′)
R

, according to a lab frame located at

latitude λ are:

ẍ′ = 2ω
(

ẏ′ sin λ − ż′ cos λ
)

, (26)

ÿ′ = −2ωẋ′ sin λ, (27)

z̈′ = 2ωẋ′ cos λ − g. (28)

The three scalar equations of motion, (26)–(28), are a set of coupled differential equations with ω

appearing to first order in them (as we have ignored the ω2 terms in the EOM). The solutions to

these equations in the context of a ball dropped from a tower can then be obtained as follows.

First, we differentiate (26) with respect to time, which results in
...
x′ = 2ω

(

ÿ′ sin λ − z̈′ cos λ
)

.

Second, we substitute (27) and (28) in this latest expression to obtain

d3x′

dt3
= −4ω2 dx′

dt
+ 2ωg cos λ. (29)

This equation is a third-order uncoupled ordinary differential equation in x′. Note that it is not

common to encounter third-order differential equations in mechanics (and in physics, in general).

We can write (29) as

d2ẋ′

dt2
= −4ω2ẋ′ + 2ωg cos λ,

which is simple harmonic in ẋ′. Therefore, a solution for ẋ′ is

ẋ′ =
g cos λ

2ω
+ A cos(2ωt), (30)

where A is a constant that depends on the initial conditions. Since we assume the ball (particle)

to be dropped from rest from a tower of height h directly above the origin of the lab frame, the

initial conditions are,



6 MOTION OF A BALL AS OBSERVED ON EARTH 37

(x′0, y′0, z′0) = (0, 0, h); (ẋ′0, ẏ′0, ż′0) = (0, 0, 0).

Therefore, at t = 0, ẋ′0 = 0; substituting these in (30), we find A = −g cos λ/(2ω). Hence,

ẋ′ =
g cos λ

2ω
[1 − cos(2ωt)] . (31)

Let us now assume that ωt ≪ 1, which implies that t ≪ 1/ω. Since ω ≈ 7.3× 10−5 s−1, 1/ω ∼ 4

hours; so t ≪ 4 hours. Therefore, for a ball that takes much less than 4 hours to fall,

cos(2ωt) = 1 −
(2ωt)2

2!
+

(2ωt)4

4!
− · · · ≈ 1 − 2ω2t2.

Substituting this approximation in (31) we obtain

ẋ′ = gω cos λ · t2. (32)

Using the fact that at t = 0, x′0 = 0,

∫

x

0

′

dx′ = gω cos λ

∫

t

0

t2 dt,

which simply yields,

x′ =
1

3
gω cos λ · t3, ωt ≪ 1 : a first order effect in ω.

This solution then allows us to determine the displacement of the ball in the x′-direction accord-

ing to the lab frame at any given time t (assuming that it takes much less than 4 hours for the

fall). Note that the displacement in the x′-direction is first order in ω. Except at the poles (where

λ = ±π/2), cos λ > 0 regardless of whether λ > 0 (northern hemisphere) or λ < 0 (southern

hemisphere), or λ = 0 (equator). Hence, except at the poles, the ball will land to the east (x′ > 0)

of the release point (recall the orientation of the lab frame in Figure 6). At the poles, x′ = 0, and

therefore, there is no deflection in the X′-direction. This is understandable, since at the poles,

the ball is dropped along the Earth’s rotational axis which does not distinguish any particular

direction due to the fact that it is fixed in absolute space. In other words, a tower located at a

pole has no movement relative to the inertial frame fixed at the center of the Earth. Another

way to arrive at this conclusion is to refer to Figure 6 where at the location shown, X′-axis runs

east-west. If this frame is transported to, say, the north pole, then the Z′-axis will point along

the Earth’s rotation axis (coinciding with the Z-axis of the inertial frame); but at this point, given

the symmetry, there is no way to define a east-west direction using the X′-axis. Therefore, the
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displacement of the ball in the X′-direction must vanish.

In contrast, when the ball is dropped from a tower situated anywhere else, since the Earth (and

therefore, the tower) is rotating eastward relative to the inertial frame fixed at the center of the

Earth, a velocity component in the same direction will be imparted to the released ball. Since the

ball is dropped from a height, it will have a greater eastward speed compared to that of the east-

ward speed of the base of the tower (relative to the inertial frame fixed at the center of the Earth).

This difference then manifests as the net eastward deflection of the dropped ball according to the

lab frame.

Now, let us substitute (32) in (27) to obtain ÿ′ = −2gω2 sin λ cos λ · t2. Then, using the fact that

at t = 0, ẏ′0 = 0,

∫

ẏ′

0

dẏ′ = −2gω2 sin λ cos λ

∫

t

0

t2 dt =⇒ ẏ′ = −
2

3
gω2 sin λ cos λ · t3.

Integrating this expression again using the fact that at t = 0, y′0 = 0, we obtain

y′ = −
1

6
gω2 sin λ cos λ · t4, ωt ≪ 1 : a second order effect in ω.

Therefore, it is evident that the displacement of the ball in the Y′-direction is a second order

effect in ω. Again, at the poles (λ = ±π/2), y′ = 0, and therefore, there is no deflection of the

ball in the Y′-direction since a tower located at a pole has no movement relative to the inertial

frame fixed at the center of the Earth. Another way to arrive at this conclusion is to refer to

Figure 6 where at the location shown, Y′-axis runs north-south. If this frame is transported to,

say, the north pole, then the Z′-axis will point along the Earth’s rotation axis (coinciding with

the Z-axis of the inertial frame); but at this point, given the symmetry, there is no way to define

a north-south direction using Y′-axis. Therefore, the displacement of the ball in the Y′-direction

must vanish.

Similarly, unlike the eastward deflection at the equator, there is no deflection of the ball in the

Y′-direction if dropped at the equator. In the lab frame set up at the equator, its Y′-axis runs

north-south. Therefore, if the ball is dropped from a tower there, given the symmetry of the

Earth as seen at the equator, how can the ball decide whether to veer north or south? This sym-

metry, then, determines the lack of displacement of the ball in the Y′-direction when dropped

from a tower at the equator. In other locations, since our lab frame is oriented such that positive

y′ implies north (see Figure 6), we see that a ball dropped in the northern hemisphere (λ > 0)

will be deflected south (y′ < 0); in contrast, a ball dropped in the southern hemisphere (λ < 0)

will be deflected north (y′ > 0). However, these non-zero deflections are quite small since the

effect is second order in ω.
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Finally, let us substitute (32) in (28) to obtain z̈′ = g(2ω2 cos2 λ · t2 − 1). Then, using the fact that

at t = 0, ż′0 = 0,

∫

ż′

0

dż′ = g

∫

t

0

(2ω2 cos2 λ · t2 − 1) dt =⇒ ż′ = g

(

2

3
ω2 cos2 λ · t3 − t

)

.

Integrating this expression again using the fact that at t = 0, z′0 = h, we obtain

z′ = h + g

(

1

6
ω2 cos2 λ · t4 −

1

2
t2

)

, ωt ≪ 1.

Note that a second order effect in ω is also present for the displacement in z′. Let us summarize

the above solutions as follows:

(c) Motion of a ball dropped from a tower as observed on Earth

Consider a ball dropped from rest at height h from a tower located at latitude λ. Suppose

the lab frame R ≡ {O′, ex′ , ey′ , ez′} is oriented such that ex′ points east, ey′ points north,

and ez′ points directly upward. Then, given the initial conditions (x′0, y′0, z′0) = (0, 0, h)
and (ẋ′0, ẏ′0, ż′0) = (0, 0, 0), the position P = (x′, y′, z′)

R
of the ball according to the lab

frame at any time t, such that ωt ≪ 1, where ω is the angular speed of the Earth, is given

by:

x′ =
1

3
gω cos λ · t3, (33)

y′ = −
1

6
gω2 sin λ cos λ · t4, (34)

z′ = h + g

(

1

6
ω2 cos2 λ · t4 −

1

2
t2

)

. (35)

The first order in ω (prominent) deflection, x′, is to the east except at the poles (λ = ±π/2);

the eastward deflection is highest at the equator (λ = 0); the second order in ω (minor)

deflection, y′, is to the north in the southern hemisphere (λ < 0) and is to the south in the

northern hemisphere (λ > 0), except at the poles and at the equator (λ = 0).

If we ignore the second order effect in ω in z′, then z′ ≈ h − 1
2 gt2, which is a most familiar

expression. The ball then reaches the ground (z′ = 0) at time t = T so that

0 = h −
1

2
gT2 =⇒ T =

√

2h

g
.

The total x′ and y′ displacements of the ball during this time are then,
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x′|east =
1

3
ω cos λ

√

8h3

g
, y′|north (s.h. : λ < 0)/south (n.h. : λ > 0) = −

2

3
·

h2

g
· ω2 sin λ cos λ. (36)

The eastward deflection of the ball is maximum at the equator (λ = 0), while the north/south

deflection is maximum halfway to the poles (λ = ±π/4; n.h. and s.h. stand for the northern and

the southern hemisphere, respectively). In contrast, as described earlier, there is no north/south

deflection at the equator; and there is no deflection of any kind at the poles (λ = ±π/2). Figure 8

shows the deflections of a ball dropped from the top of the Eiffel Tower, which is about 312 m

high. Such a ball will land about 8 cm to the east from where it was dropped; its southward

deflection is about 17 micrometers, and hence, is almost null. The eastward deflection of the ball

is still small, and may appear to an observer at the base of the tower to land almost directly below

where it was released. This example then shows the difficulty of discerning the rotation of the

Earth by observing falling objects, which practically fall from much smaller heights resulting in

even smaller deflections.

Figure 8: Motion of a ball dropped from the top of the Eiffel Tower: height h ≈ 312 m, latitude λ ≈ 48.86◦

(0.85 rad) N. It takes the ball close to 8 s to fall to the ground; g = 9.81 m/s2. Left (blue): Eastward (x′ > 0)

deflection of the ball against its southward (y′ < 0) deflection; the ball lands just short of 8 cm to the east

and about 17 µm to the south from where it was released. Right (red): Eastward (x′ > 0) deflection of the

ball against the height (z′ ≥ 0).



6 MOTION OF A BALL AS OBSERVED ON EARTH 41

(d) Motion of a Ball Thrown Vertically Upward from a Point on Earth

We now consider a ball thrown vertically upward from the origin O′ of the lab frame located at

latitude λ. The equations of motion (26)–(28) still apply but now with the initial conditions

(x′0, y′0, z′0) = (0, 0, 0); (ẋ′0, ẏ′0, ż′0) = (0, 0, v0),

where v0 is the initial vertical speed of the ball as measured in the lab frame. Since the initial

conditions in the X′- and Y′-directions are the same as before, it follows (as before) that, for

ωt ≪ 1 (that is, for motions with duration much less than 4 hours),

ẋ′ = gω cos λ · t2, ẏ′ = −
2

3
gω2 sin λ cos λ · t3.

Since ẏ′ is second order in ω, we can effectively ignore this term. Similarly, any term having the

combination ωẋ′ is also second order in ω; such terms, therefore, can also be effectively ignored.

The equations of motion (26)–(28) then reduce to

ẍ′ = −2ωż′ cos λ, (37)

ÿ′ = 0, (38)

z̈′ = −g. (39)

Given the initial conditions, it is evident from (38), that y′ = 0 ∀t. From (39), using the initial

conditions, it also follows from integration that

ż′ = v0 − gt, z′ = v0t −
1

2
gt2,

which are familiar expressions. The ball lands on the ground when z′ = 0 at t = T > 0. It

therefore follows from 0 = v0T − 1
2 gT2 = (v0 −

1
2 gT)T, that the ball is in flight for a duration

of T = 2v0/g. Hence, it take the ball t = τ = v0/g to reach the maximum height h of its

trajectory. Therefore, h = v0τ − 1
2 gτ2 = v2

0/(2g); solving this for v0, we obtain v0 =
√

2gh. Thus,

T = 2
√

2h/g. Now, substituting ż′ = v0 − gt in (37), we obtain ẍ′ = −2ω cos λ(v0 − gt). Using

the initial conditions, this expression can be directly integrated to yield

ẋ′ = −2ω cos λ

(

v0t −
1

2
gt2

)

, x′ = −ω cos λ

(

v0t2 −
1

3
gt3

)

.

Note that the solution for x′ is a combination of two competing terms: one, quadratic, and the

other, cubic, in time. To understand the net effect of these two competing terms note that
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(

v0t2 −
1

3
gt3

)

= 2

∫

t

0

(

v0t −
1

2
gt2

)

dt = 2

∫

t

0

z′ · dt ≥ 0, ∵ z′ ≥ 0 ∀ t ≥ 0.

Therefore, the net effect of the two competing time terms in the solution for x′ is either null (when

t = 0) or positive (when t > 0). Therefore, x′ < 0 for t > 0. Since cos λ > 0 at any point on Earth

(except at the poles), and that ex′ is oriented to the east, the negative x′ values imply that, other

than at poles, the ball will land to the west of where it was launched. There is no deflection of

the ball at the poles. We summarize the results below.

(d) Motion of a ball thrown vertically upward from a point on Earth

A lab frame R ≡ {O′, ex′ , ey′ , ez′} at latitude λ is oriented such that ex′ points east, ey′

points north, and ez′ points directly upward. A ball is thrown vertically upward at O′

with initial velocity v0 = v0ez′ . Let ω be the angular speed of the Earth, and let the

second order effects of ω be ignored from the equations of motion. Then, given the initial

conditions (x′0, y′0, z′0) = (0, 0, 0) and (ẋ′0, ẏ′0, ż′0) = (0, 0, v0), the position P = (x′, y′, z′)
R

of

the ball according to the lab frame at any time t, such that ωt ≪ 1, is given by:

x′ = −ω cos λ

(

v0t2 −
1

3
gt3

)

, (40)

y′ = 0, (41)

z′ = v0t −
1

2
gt2. (42)

The first order in ω deflection, x′, is to the west except at the poles (λ = ±π/2) where it

is null; the westward deflection is highest at the equator (λ = 0).

Since the ball takes a time T = 2
√

2h/g to fall back on the ground, the total displacement in the

x′-direction is given by x′(T) = −ω cos λ
(

v0T2 − 1
3 gT3

)

, which, along with v0 =
√

2gh, evalu-

ates to

x′|west = −
4

3
ω cos λ

√

8h3

g
. (43)

Thus, except at the poles, when a ball is dropped from rest, it lands to the east of the release

point; in contrast, when a ball is thrown vertically upward, it lands to the west of the launch

point. Figure 9 shows the westward deflection against the height of a ball launched at an initial

vertical speed of v0 = 78 m/s. Such an initial speed will allow the ball to reach the top of the
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Eiffel Tower (height, h ≈ 312 m). The ball lands about 32 cm (about a foot) to the west of the

launch point. With this example, we again realize the difficulty of detecting the rotation of the

Earth about its axis by simply throwing a ball up in the air, where typical throws would not carry

a projectile as high as the Eiffel Tower, and therefore, would result in much smaller deflections.

Figure 9: The westward (x′ < 0) deflection against the height (z′ ≥ 0) of a ball thrown vertically upward

at an initial speed v0 = 78 m/s at latitude λ ≈ 48.86◦ (0.85 rad) N. This initial speed will allow the ball to

reach the top of the Eiffel Tower (height, h ≈ 312 m). It takes the ball about 16 s to fall back to the ground;

g = 9.81 m/s2. The ball lands about 32 cm (about a foot) to the west of the launch point.

Given the discussion above, we can therefore appreciate the effort it took in human history to re-

alize that the Earth, in fact, is in motion. The problem of motion, as the reader may have glimpsed

from this essay, is non-trivial, and it played a profound role in the development of mechanics,

and science in general.

Historically, Newton realized that due to Earth’s rotation about its axis, a ball dropped from a

tower must land to the east of the release point contrary to earlier beliefs that it should land

to the west. He estimated this eastward deflection at the equator to be ω
√

2h3/g, which is a

factor of 3/2 greater than the effect stated in (36). The reason for this discrepancy is due to the

fact that Newton did not account for the Coriolis acceleration which has a component directed

toward the west, which in turn reduces the net eastward deflection. In his correspondence with

Newton, Robert Hooke (1635-1703) made many important observations and clarifying comments

regarding the nature of motion and the forces acting on bodies. Hooke realized, correctly, that

in addition to the eastward deflection, a falling object should also deflect south in the northern
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hemisphere. However, Hooke thought that this southward deflection is the primary effect, when

in fact, as stated in (36), it is a second order effect in ω, and therefore, is quite small. Regarding

the Coriolis acceleration, its mathematical description was provided by Gaspard-Gustave Coriolis

(1792-1843) in 1835. However, its effect on falling bodies as observed on Earth have been foreseen

by Giovanni Battista Riccioli (1598-1671) and Claude François Milliet Dechales (1621-78) close to

two centuries before Coriolis. Interestingly, though, they both rejected the rotation of the Earth

since they were unable to observe the deflections due to Coriolis acceleration. This historical

snippet is shared with the reader to illustrate that the problem of falling bodies posed a signifi-

cant challenge to the pioneers of mechanics. The problem required careful observation and the

development of new physical and mathematical insights to understand.

Further Reading

The history of astronomy and mechanics, and the cultural inputs to its development and result-

ing implications is a vast subject in itself. Some literature that the readers may find useful within

the context of the present essay are:

• V. I. Arnol’d, Huygens & Barrow, Newton & Hooke, Eric Primrose (translator), Birkhäuser,

Basel, 1990.

• I. Bernard Cohen, The Birth of a New Physics, W. W. Norton, New York, 1985.

• Galileo Galilei, Dialogue Concerning the Two Chief World Systems, Stillman Drake (translator),

Stephen J. Gould (series editor), The Modern Library, New York, 2001.

• Owen Gingerich, The Eye of Heaven: Ptolemy, Copernicus, Kepler, American Institute of Physics,

New York, 1993.

• John North, Cosmos, The University of Chicago Press, Chicago, 2008.

• Károly Simonyi, A Cultural History of Physics, David Kramer (translator), CRC Press, Boca

Raton, 2012.

For the systematic approach to kinematics and dynamics, along with the notation we have

adopted, the reader is referred to:

• N. Jeremy Kasdin and Derek A. Paly, Engineering Dynamics: a comprehensive approach, Prince-

ton University Press, Princeton, 2011.
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